首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the effect of barbiturates on sleep two subjects, after a control period, received 200 mg. of sodium amylobarbitone for 26 nights. All night sleep records taken during this period showed that the barbiturate shortened the delay to sleep, increased the total sleep period, lengthened the delay to rapid eye movement (R.E.M.) sleep, and depressed R.E.M. sleep. After five nights R.E.M. sleep returned to baseline values —that is, showed tolerance. On stopping the drug withdrawal phenomena were seen, even to this small dose of the drug.In a second experiment a subject dependent on 600 mg. of Tuinal was found to have low normal R.E.M. sleep while on drugs. On withdrawal, delay to sleep increased and total sleep time fell. R.E.M. sleep was doubled and the delay to R.E.M. became abnormally short.These findings suggest that hypnotics allow sleep to be “borrowed,” and that patients should be supported while they are being withdrawn.  相似文献   

2.
Morningness/eveningness (M/E) preference is an important circadian rhythm indicator with strong individual variation. M/E chronotype has been found to be correlated with depression in adults, yet the relationship is less clear in children and adolescents. Additionally, poor sleep quality is another commonly studied risk factor for depression. The aims of the present study are to investigate the independent effects of M/E chronotype on youth depression using both self-report and parental-report questionnaires. We also evaluated how poor sleep quality may affect the relationship through a mediating or moderating effect. In total, 2,139 students attending grades 1 to 7 participated in this study. They completed questionnaires regarding M/E chronotype, depression, and sleep quality. A total of 1,708 parents also participated and filled out parental-reports of emotional and behavioral problems of their children. The prevalence of self- and parental-report depression was 16.8% and 12.8% among young students, respectively. Overall, 15.4% of the students were the eveningness type. Being an eveningness type was independently associated with self-report depression after adjustment for poor sleep quality (OR = 1.86, 95% CI = 1.07–3.24). We also observed that poor sleep quality mediated the influence of M/E chronotype on self-report depression among students aged 7–13 years (p < 0.001). On the other hand, being an eveningness type was associated with a number of parental-report emotional and behavioral problems in the students, in addition to depression, although these associations become non-significant after adjusted for poor sleep quality. Our results demonstrate the importance of M/E chronotype on youth depression and poor sleep quality partly mediates this effect.  相似文献   

3.
4.
A Sahu  S P Kalra 《Life sciences》1987,40(12):1201-1206
Delta sleep inducing peptide (DSIP) has been shown to increase sleep in various animals and it is found in various parts of the brain including the hypothalamus. While intraventricular administration of DSIP (2 or 10 micrograms) failed to affect LH release in ovariectomized rats, in two separate experiments DSIP (2 or 10; 15 or 30 micrograms) promptly stimulated LH release in ovariectomized estrogen, progesterone-primed rats. However, DSIP (10(-8) or 10(-6)M) had no effect on either basal or luteinizing hormone-releasing hormone-induced in vitro LH release from the hemipituitaries of ovarian steroid-primed rats. These findings are in accord with the hypothesis that DSIP or DSIP-like peptide(s) may activate the hypothalamic neural circuitry responsible for stimulation of LH release reported to occur during sleep.  相似文献   

5.
The focus of this study was on daytime and nighttime sleep and wakefulness during the peak age for Sudden Infant Death Syndrome (SIDS), two to four months, to determine whether there are differences between at‐risk for SIDS (R) and control (C) infants. Such differences may provide insight on the frequent occurrence of SIDS in the early morning hours, when most babies are asleep. This is the only study in which R and C infants were continuously monitored for long periods of time (24–48 h) and then followed and recorded at monthly intervals until the age of 4–6 months. Data analyses indicate that ultradian REM/NREM cyclicity becomes stabilized into a regular pattern at three months of age. Infants at this age convert from a polyphasic sleep/wakefulness pattern to a circadian one. Among the changes that occur is a lengthening of short sleep periods that consolidate at night and wake periods that consolidate in the daytime. The most striking effects are related to sleep state and vary according to age and sex. The lengthening of single sleep and wakeful periods is coupled with the maturation of the brain. The development of the central nervous system facilitates the synchronization of sleeping patterns with external light input and social entrainment. One or more biological clocks or oscillators may be responsible for these REM/NREM patterns and circadian cycles. These differences during the early morning hours, when the occurrence of SIDS peaks, may have important implications for understanding the pathophysiological mechanism of SIDS.  相似文献   

6.
The focus of this study was on daytime and nighttime sleep and wakefulness during the peak age for Sudden Infant Death Syndrome (SIDS), two to four months, to determine whether there are differences between at-risk for SIDS (R) and control (C) infants. Such differences may provide insight on the frequent occurrence of SIDS in the early morning hours, when most babies are asleep. This is the only study in which R and C infants were continuously monitored for long periods of time (24-48 h) and then followed and recorded at monthly intervals until the age of 4-6 months. Data analyses indicate that ultradian REM/NREM cyclicity becomes stabilized into a regular pattern at three months of age. Infants at this age convert from a polyphasic sleep/wakefulness pattern to a circadian one. Among the changes that occur is a lengthening of short sleep periods that consolidate at night and wake periods that consolidate in the daytime. The most striking effects are related to sleep state and vary according to age and sex. The lengthening of single sleep and wakeful periods is coupled with the maturation of the brain. The development of the central nervous system facilitates the synchronization of sleeping patterns with external light input and social entrainment. One or more biological clocks or oscillators may be responsible for these REM/NREM patterns and circadian cycles. These differences during the early morning hours, when the occurrence of SIDS peaks, may have important implications for understanding the pathophysiological mechanism of SIDS.  相似文献   

7.
Mutations in cardiac troponin T (cTnT), Δ160E and R92Q, have been linked to familial hypertrophic cardiomyopathy (FHC), and some studies have indicated that these mutations can lead to a high incidence of sudden cardiac death in the relative absence of significant ventricular hypertrophy. Alterations in autonomic function have been documented in patients with hypertrophic cardiomyopathy. We hypothesize that alterations in autonomic function may contribute to mutation-specific clinical phenotypes in cTnT-related FHC. Heart rate (HR) variability (HRV) has been used to assess autonomic function from an electrocardiograph. Nontransgenic, Δ160E, or R92Q mice were implanted with radiofrequency transmitters to obtain continuous electrocardiograph recordings during 24-h baseline and 30-min recordings after β-adrenergic receptor drug injections. Although Δ160E mice did not differ from nontransgenic mice for any 24-h HRV measurements, R92Q mice had impaired HR regulation, as measured by a decrease in the SD of the R-R interval, a decrease in the low frequency-to-high frequency ratio, a decrease in normalized low frequency, and an increase in normalized high frequency. β-Adrenergic receptor density measurements and HRV analysis after drug injections did not reveal any significant differences for Δ160E or R92Q mice versus nontransgenic mice. Arrhythmia analysis revealed both an increased incidence of heart block in R92Q mice at baseline and frequency of premature ventricular contractions after isoproterenol injections in Δ160E and R92Q mice. In addition, Δ160E and R92Q mice exhibited a prolonged P duration after drug injections. Therefore, between two independent and clinically severe cTnT mutations within the same functional domain, only R92Q mice exhibited altered autonomic function, whereas both mutations demonstrated abnormalities in conduction and ventricular ectopy.  相似文献   

8.
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way.  相似文献   

9.
Human cerebral function was monitored electrophysiologically during sleep over a period of months before, during, and after the intake of fenfluramine, 40-120 mg/day. Effects included dose-related reduction of paradoxical sleep, increase of intra-sleep restlessness, and changes in E.E.G. slow-wave sleep. It is hypothesized that weight loss may be associated with increase of the last. Grinding of teeth (bruxism) also was noted.Long-term studies make it possible to demonstrate changing central effects with time, including tolerance phenomena. Withdrawal abnormalities are related to the time taken for the drug to be eliminated—in the present case reaching a maximum four days after withdrawal.  相似文献   

10.
AimsThe type 2 muscarinic receptor (M2R) differs from the other G-protein-coupled muscarinic receptor (type 4, or M4R) in tissue distribution and physiologic effects. We studied the impact of these receptors on sleep and arousal by using M2R and M4R knock-out (KO) mice.Main methodsM2R and M4R KO and genetically intact mice were compared in terms of normal patterns of sleep, responses to sleep loss, infectious challenge and acoustic startle, and acoustic prepulse inhibition of startle (PPI).Key findingsUnder basal conditions, M2R and M4R KO mice do not differ from the background strain or each other in the amount or diurnal pattern of sleep, locomotor activity, and body temperature. After enforced sleep loss, M2R KO mice, in contrast to the other two strains, show no rebound in slow-wave sleep (SWS) time, although their SWS is consolidated, and they show a greater rebound in time spent in REMS (rapid-eye-movement sleep) and REMS consolidation. During influenza infection, M2R KO mice, as compared with the other strains, show marked hypothermia and a less robust increase in SWS. During Candida albicans infection, M2R KO mice show a greater increase in SWS and a greater inflammatory response than do the other strains. M2R KO mice also show greater acoustic startle amplitude than does the background strain, although PPI was not different across the 3 strains over a range of stimulus intensities.SignificanceTaken together, these findings support different roles for M2R and M4R in the modulation of sleep and arousal during homeostatic challenge.  相似文献   

11.
12.
Experimental and clinical evidences indicate that endocrine mechanisms, particularly involving the pineal gland, exert a role in the development of postural deficits leading to the occurrence of idiopatic scoliosis (IS). In particular, experiments performed in bipedal animals have shown that removal of the pineal gland, which secretes melatonin (M), induced a scoliosis, and that in such preparations, administration of this hormone prevented the development of this deformity (cf. 131). It appears also that adolescents with IS showed a reduced level of serum M with respect to age-related control subjects. The possible mechanisms involved in the M regulation of the tonic contraction of the axial musculature have been discussed. It is known that the pineal gland is implicated in the control of circadian rhythms, including the sleep-waking cycle, and that during this cycle there are prominent changes in postural activity, which affect not only the limbs, but also the axial musculature. These changes are characterized by a decrease followed by a suppression of postural activity, which occur particularly during transition from wakefulness to synchronized sleep and, more prominently, to rapid eye movement (REM) sleep. Episodes of postural atonia may also occur during the cataplectic episodes, which are typical of narcolepsy. Cholinergic and/or cholinoceptive neurons located in the dorsal pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system, intervene in the suppression of posture during REM sleep, as well as during the cataplectic episodes which occur in narcolepsy. These structures are under the modulatory (inhibitory) influence of the dorsomedial and the dorsolateral pontine tegmentum, where serotoninergic raphe nuclei (RN) neurons and noradrenergic locus coeruleus (LC) neurons are located. We postulated that M may act not only on the circadian pacemaker, but also directly on the pontine tegmental structures involved in the regulation of posture during the animal states indicated above. This hypothesis is supported by the facts that: 1) the dorsal pRF may contain specific binding sites for M; 2) this structure is particularly sensitive to M in adolescents, as well as in adult subjects affected by narcoleptic disturbances leading to cataplexy; 3) M increases the release of serotonin (5-HT), a neurotransmitter which enhances the postural tone by acting on the dorsal pRF: on the other hand, deficits in M levels may lower the activity of the serotoninergic raphe system, thus leading to a decrease or suppression of postural activity similar to that occurring either during REM sleep or during the cataplectic episodes typical of narcoleptic patients; 4) IS patients may show episodes of sleep apnea, a phenomenon which has been attibuted to a reduced tonic contraction of primary and accessory respiratory muscles during REM, resulting from a reduced release of 5-HT at dorsal pontine level. It has been postulated that, if the reduced M and 5-HT levels are subliminal to produce a complete suppression of posture under the conditions reported above, the reduced postural tone, which results from this condition may lead to the development of IS, due to hypotonia which affects the axial musculature. M secretion could be regulated not only by the activity of the serotoninergic raphe neurons projecting to the pineal gland, but probably also by the activity of noradrenergic LC neurons. It is likely that the development of IS, which results from a reduced level of M and 5-HT, may occur provided that the noradrenergic LC inhibition of the pontine structures is impaired. Such impairment could depend upon genetic factors, similar to those postulated to play a role in narcolepsy. In conclusion, the possibility exists that an impaired activity of brain monoaminergic systems may lead to disfunction in the production of M, which is apparently an important factor in the etiopathogenesis of IS.  相似文献   

13.
Free, bound, and total plasma tryptophan (F.P.T., B.P.T., and T.P.T.) levels have been measured throughout the night in six young female volunteers. All-night polygraphic sleep recordings were also made. No direct temporal relationship was found between plasma tryptophan levels and specific sleep stages. The mean F.P.T. levels, however, were found to have a positive correlation with rapid-eye-movement (R.E.M.) sleep and a negative correlation with non-R.E.M. sleep. An inverse relationship existed between the F.P.T. and B.P.T. levels. There appeared to be a diurnal variation in F.P.T. levels, with high readings in the first half of the night.  相似文献   

14.
Cocaine administration can be disruptive to sleep. In compulsive cocaine users, sleep disruption may be a factor contributing to relapse. The effects of cocaine on sleep, particularly those produced by low doses, have not been extensively studied. Low dose cocaine may stimulate brain reward systems that are linked to the liability of abusing of this drug. This study was designed to assess the effects of the acute administration of low to moderate cocaine doses on sleep in the rat. Polygraphic recordings were obtained from freely moving, chronically instrumented rats over a 6-h period after the administration of either cocaine (as a 2.5-10 mg/kg intraperitoneal dose) or saline. Following cocaine administration, time spent by the rats in wakefulness increased and slow wave sleep decreased in a dose-dependent manner, compared to controls. These changes lasted between 1 to 3 h following the cocaine administration. Rapid eye movement (REM) sleep was decreased during a 2- to 3-h period following the injection of 5 and 10 mg/kg doses of cocaine. In contrast, REM sleep increased during the periods 2-4 h after the administration of 2.5 and 5 mg/kg doses of cocaine. These results indicate that sleep can be significantly altered by low doses of cocaine when administered subacutely.  相似文献   

15.
The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions--are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions.  相似文献   

16.
Alzheimer's disease (AD) involves selective loss of muscarinic M2, but not M1, subtype neuroreceptors in the posterior parietal cortex of the human brain. Emission tomographic study of the loss of M2 receptors in AD is limited by the fact that there is currently no available M2-selective radioligand which can penetrate the blood-brain barrier. However, by taking advantage of the different pharmacokinetic properties of (R,R)-[123I]IQNB for the M1 and M2 subtypes, it may be possible to estimate losses in M2. It has previously been hypothesized that the difference between an early study and a late study should provide information on the M2 receptor population. In order to test this hypothesis, we present here the results of pharmacokinetic simulations of the in vivo localization of (R,R)-[123I]IQNB in brain regions containing various proportions of M1 and M2 subtypes. These results permit us to conclude that SPECT imaging of (R,R)-[123I]IQNB localization can potentially be used to quantitate changes in the M2 subtype in a disease state within a brain region for which the ratio M2/M1 is sufficiently high in normal individuals.  相似文献   

17.
In this work we consider the differential effect of Valinomycin used at different concentrations both on the protein synthesis of reticulocytes and on 42K exchange. We demonstrate that there is a two step action of this antibiotic. At 10(-6)M and below the drug has no effect on the 42K exchange, but it stops, however reversibly, protein synthesis. At 10(-5)M the drug has a very sharp action on the 42K exchange and stops protein synthesis in an irreversible way. Ribosomal population checked by two ways, sucrose gradient and direct counting on E.M. sections shows that at low concentrations of Valinomycin (10(-8)M to 10(-6)M) there is no breakdown of the polysomes which can be detected by either one of these methods. On the contrary, after short incubation with 10(-5)M of Valinomycin the breakdown of ribosomes is very clear, as evidenced by sucrose gradient analysis. By direct ribosomes clusters counting on E.M. sections this breakdown is seen only after long incubation.  相似文献   

18.
Disturbances of breathing arising from failures of the respiratory center are not uncommon. Among them, breath holding and apnea occur most frequently as consequences of pulmonary and cardiac diseases, hypoxia, head trauma, cerebral inflammatory processes, genetic defects, degenerative brain diseases, alcoholism, deep anesthesia and drug overdose. They are often life-threatening and fail to respond to existing pharmacotherapies. After extensive research, there is now a reliable basis for new strategies to treat respiratory disturbances by pharmacological manipulation of intracellular signaling pathways, particularly those involving the serotonin receptor family. Specific activation of these pathways effectively prevails respiratory disturbances and can be extended to treatment of life-threatening respiratory disorders in patients.  相似文献   

19.
Respiratory network plasticity is a modification in respiratory control that persists longer than the stimuli that evoke it or that changes the behavior produced by the network. Different durations and patterns of hypoxia can induce different types of respiratory memories. Lateral pontine neurons are required for decreases in respiratory frequency that follow brief hypoxia. Changes in synchrony and firing rates of ventrolateral and midline medullary neurons may contribute to the long-term facilitation of breathing after brief intermittent hypoxia. Long-term changes in central respiratory motor control may occur after spinal cord injury, and the brain stem network implicated in the production of the respiratory rhythm could be reconfigured to produce the cough motor pattern. Preliminary analysis suggests that elements of brain stem respiratory neural networks respond differently to hypoxia and hypercapnia and interact with areas involved in cardiovascular control. Plasticity or alterations in these networks may contribute to the chronic upregulation of sympathetic nerve activity and hypertension in sleep apnea syndrome and may also be involved in sudden infant death syndrome.  相似文献   

20.
Individual variation in the phase and amplitude of human circadian rhythms is well known, but the impact of heritable factors on such variation is less clear. We estimated the narrow-sense heritability for selected circadian and sleep timing, quality, and duration measures among related members of the Hutterites, an endogamous, religious community (n=521 participants). “Morningness-eveningness” (M/E), a stable trait reflecting circadian phase, was evaluated using the Composite Scale (CS). Subjective sleep measures were assessed using the Sleep Timing Questionnaire. Initial analyses reconfirmed the impact of age on M/E. Previously reported correlations between M/E scores and the sleep measures were also noted, demonstrating the construct validity of the questionnaires among the participants. Following corrections for age, gender, and colony of residence, significant narrow-sense heritability was noted for M/E (23%). The heritability for subjective sleep measures (related to timing, duration, and quality) were statistically significant for all but one variable, and varied between 12.4% and 29.4%. Thus, significant heritable influences on human circadian phase and subjective sleep indices can be detected through family-based studies. In view of the impact of circadian malfunction on human health, it may be worthwhile to map genetic factors impacting circadian and sleep variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号