首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article, we provide evidence for the presence of diglyceride kinase activity in cell extracts of Rhizobium meliloti 1021. Characterization of the rhizobial enzyme revealed that it shares many properties with the diglyceride kinase of Escherichia coli. A possible role for this enzyme during cyclic beta-1,2-glucan biosynthesis is discussed.  相似文献   

2.
In this article, we provide evidence for the presence of diglyceride kinase activity in cell extracts of Rhizobium meliloti 1021. Characterization of the rhizobial enzyme revealed that it shares many properties with the diglyceride kinase of Escherichia coli. A possible role for this enzyme during cyclic β-1,2-glucan biosynthesis is discussed.  相似文献   

3.
The periplasmic cyclic beta-(1,2)-glucans of Rhizobium spp. are believed to provide functions during hypoosmotic adaptation and legume nodulation. In Rhizobium meliloti, cyclic beta-(1,2)-glucans are synthesized at highest levels when cells are grown at low osmolarity, and a considerable fraction (> or = 35%) of these glucans may become substituted with phosphoglycerol moieties. Thus far, two chromosomally encoded proteins, NdvA and NdvB, have been shown to function during cyclic beta-(1,2)-glucan biosynthesis; however, the precise roles for these proteins remain unclear. In the present study, we show that R. meliloti mutants lacking up to one-third of the downstream region of ndvB synthesize cyclic beta-(1,2)-glucans similar to those produced by wild-type cells with respect to size and phosphoglycerol substituent profile. In contrast, no phosphoglycerol substituents were detected on the cyclic beta-(1,2)-glucans synthesized by an R. meliloti ndvA mutant.  相似文献   

4.
In a previous study (Miller, K.J., Kennedy, E.P. and Reinhold, V.N. (1986) Science 231, 48-51) it was reported that the biosynthesis of periplasmic cyclic beta-1,2-glucans by Agrobacterium tumefaciens is strictly osmoregulated in a pattern closely similar to that found for the membrane-derived oligosaccharides of Escherichia coli (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. USA 79, 1092-1095). In addition to the well-characterized neutral cyclic glucan, the periplasmic glucans were found to contain an anionic component not previously reported. Biosynthesis of the anionic component is osmotically regulated in a manner indistinguishable from that of the neutral cyclic beta-1,2-glucan. We now find that the anionic component consists of cyclic beta-1,2-glucans substituted with one or more sn-1-phosphoglycerol residues. The presence of sn-1-phosphoglycerol residues represents an additional, striking similarity to the membrane-derived oligosaccharides of E. coli.  相似文献   

5.
The cyclic beta-(1,2)-glucans of Rhizobium meliloti and Agrobacterium tumefaciens play an important role during hypoosmotic adaptation, and the synthesis of these compounds is osmoregulated. Glucosyltransferase, the enzyme responsible for cyclic beta-(1,2)-glucan biosynthesis, is present constitutively, suggesting that osmotic regulation of the biosynthesis of these glucans occurs through modulation of enzyme activity. In this study, we examined regulation of cyclic glucan biosynthesis in vitro with membrane preparations from R. meliloti. The results show that ionic solutes inhibit glucan synthesis, even when they are present at low concentrations (e.g., 10 mM). In contrast, neutral solutes (glucose, sucrose, and the compatible solutes glycine betaine and trehalose) were found to stimulate glucan synthesis in vitro when they were present at high concentrations (e.g., 1 M). Furthermore, high concentrations of these neutral solutes were shown to compensate for the inhibition of glucosyltransferase activity by ionic solutes. Consistent with their ionic character, the compatible solute potassium glutamate and the osmoprotectant choline chloride inhibited glucosyltransferase activity in vitro. The results suggest that intracellular ion concentrations, intracellular osmolarity, and intracellular concentrations of nonionic compatible solutes all act as important determinants of glucosyltransferase activity in vivo. Additional experiments were performed with an ndvA mutant defective for transport of cyclic glucans and an ndvB mutant that produces a C-terminal truncated glucosyltransferase. Cyclic beta-(1,2)-glucan biosynthesis, although reduced, was found to be osmoregulated in both mutants. These results reveal that NdvA and the C terminus of NdvB are not required for osmotic regulation of cyclic beta-(1,2)-glucan biosynthesis.  相似文献   

6.
A novel cyclic beta-1,2-glucan mutant of Rhizobium meliloti.   总被引:1,自引:1,他引:0       下载免费PDF全文
The periplasmic cyclic beta-1,2-glucans produced by bacteria within the Rhizobiaceae family provide functions during hypo-osmotic adaptation and plant infection. In Rhizobium meliloti, these molecules are highly modified with phosphoglycerol and succinyl substituents, and it is possible that the anionic character of these glucans is important for their functions. In the present study, we have used a thin-layer chromatographic screening method to identify a novel R. meliloti mutant specifically blocked in its ability to transfer phosphoglycerol substituents to the cyclic beta-1,2-glucan backbone. Further analysis revealed that the cyclic glucans produced by this mutant contained elevated levels of succinyl substituents. As a result, the overall anionic charge on the cyclic beta-1,2-glucans was found to be similar to that of wild-type cells. Despite this difference in cyclic beta-1,2-glucan structure, the mutant was shown to effectively nodulate alfalfa and to grow as well as wild-type cells in hypo-osmotic media.  相似文献   

7.
Rhizobium meliloti and Agrobacterium tumefaciens synthesize periplasmic cyclic (beta)-(1,2)-glucans during adaptation to hypoosmotic environments. It also appears that these glucans provide important functions during the interactions of these bacteria with plant hosts. A large fraction of these glucans may become modified with anionic substituents such as phosphoglycerol or succinic acid; however, the role(s) of these substituents is unknown. In this study, we show that growth of these bacteria in phosphate-limited media leads to a dramatic reduction in the levels of phosphoglycerol substituents present on the periplasmic cyclic (beta)-(1,2)-glucans. Under these growth conditions, R. meliloti 1021 was found to synthesize anionic cyclic (beta)-(1,2)-glucans containing only succinic acid substituents. Similar results were obtained with R. meliloti 7154 (an exoH mutant which lacks the ability to succinylate its high-molecular-weight exopolysaccharide), revealing that succinylation of the cyclic (beta)-(1,2)-glucans is mediated by an enzyme system distinct from that involved in the succinylation of exopolysaccharide. In contrast, when A. tumefaciens C58 was grown in a phosphate-limited medium, it was found to synthesize only neutral cyclic (beta)-(1,2)-glucans.  相似文献   

8.
We have examined some aspects of the mechanism of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens (235-kDa protein, gene product of the chvB region). The enzyme produces cyclic beta-1,2-glucans containing 17 to 23 glucose residues from UDP-glucose. In the presence of added cyclic beta-1,2-glucans (> 0.5 mg/ml) (containing 17 to 23 glucose residues), the enzyme instead synthesizes larger cyclic beta-1,2-glucans containing 24 to 30 glucose residues. This is achieved by de novo synthesis and not by disproportion reactions with the added product. This is interpreted as inhibition of the specific cyclization reaction for the synthesis of cyclic beta-1,2-glucans containing 17 to 23 glucose residues but with no concomitant effect on the elongation (polymerization) reaction. Temperature and detergents both affect the distribution of sizes of cyclic beta-1,2-glucans, but glucans containing 24 to 30 glucose residues are not produced. We suggest that the size distribution of cyclic beta-1,2-glucan products depends on competing elongation and cyclization reactions.  相似文献   

9.
The synthesis of periplasmic cyclic beta-1,2-glucans is a property unique to species of the family Rhizobiaceae. For this reason, it is generally believed that these molecules may play an important role in the plant infection process. In the present study, we determined that the cyclic beta-1,2-glucans produced by Rhizobium meliloti 1021 were predominantly anionic in character and contained both phosphoglycerol and succinic acid substituents. In addition, we demonstrated that phosphatidylglycerol was the source of the phosphoglycerol substituents present on these oligosaccharides and that greater than 60% of the total phospholipid turnover in this organism involved this substitution reaction.  相似文献   

10.
Isolation and characterization of an ndvB locus from Rhizobium fredii   总被引:4,自引:0,他引:4  
A gene (ndvB) in Rhizobium meliloti that is essential for nodule development in Medicago sativa (alfalfa), specifies synthesis of a large membrane protein. This protein appears to be an intermediate in beta-1,2-glucan synthesis by the microsymbiont. Southern hybridization analysis showed strong homology between an ndvB (chvB) probe and genomic DNA of R. fredii but not from Bradyrhizobium japonicum. A cosmid clone containing the putative ndvB locus was isolated from a Rhizobium fredii gene library. The cosmid clone which complemented R. meliloti ndvB mutants for synthesis of beta-1,2-glucans and effective nodulation of alfalfa was mapped and subcloned. Fragment-specific Tn5 mutagenesis followed by homologous recombination into the R. fredii genome indicated that the region was essential for beta-1,2-glucan synthesis and for formation of an effective symbiosis with Glycine max (soybean).  相似文献   

11.
Cyclic beta-(1,2)-glucans are synthesized by members of the Rhizobiaceae family through protein-linked oligosaccharides as intermediates. The protein moiety is a large inner membrane molecule of about 319 kDa. In Agrobacterium tumefaciens and in Rhizobium meliloti the protein is termed ChvB and NdvB, respectively. Inner membranes of R. meliloti 102F34 and A. tumefaciens A348 were first incubated with UDP-[14C]Glc and then solubilized with Triton X-100 and analyzed by polyacrylamide gel electrophoresis under native conditions. A radioactive band corresponding to the 319-kDa protein was detected in both bacteria. Triton-solubilized inner membranes of A. tumefaciens were submitted to native electrophoresis and then assayed for oligosaccharide-protein intermediate formation in situ by incubating the gel with UDP-[14C]Glc. A [14C]glucose-labeled protein with an electrophoretic mobility identical to that corresponding to the 319-kDa [14C]glucan protein intermediate was detected. In addition, protein-linked radioactivity was partially chased when the gel was incubated with unlabeled UDP-Glc. A heterogeneous family of cyclic beta-(1,2)-glucans was formed upon incubation of the gel portion containing the 319-kDa protein intermediate with UDP-[14C]Glc. A protein with an electrophoretic behavior similar to the 319-kDa protein intermediate was "in gel" labeled by using Triton-solubilized inner membranes of an A. tumefaciens exoC mutant, which contains a protein intermediate without nascent glucan. These results indicate that initiation (protein glucosylation), elongation, and cyclization were catalyzed in situ. Therefore, the three enzymatic activities detected in situ reside in a unique protein component (i.e., cyclic beta-(1,2)-glucan synthase). It is suggested that the protein component is the 319-kDa protein intermediate, which might catalyze the overall cyclic beta-(1,2)-glucan synthesis.  相似文献   

12.
We have previously shown that species ofBradyrhizobium synthesize a novel class of cyclic beta glucans which contains both beta-1,6 and beta-1,3 glycosidic linkages [Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN (1990) J Bacteriol 172:136–142]. In the present study we show that these cell-associated glucans are localized within the periplasmic compartment and that the biosynthesis of these glucans is osmotically regulated.  相似文献   

13.
High levels of cyclic [beta]-1,6-1,3-glucans (e.g. 0.1 mg mg-1 of total protein) are synthesized by free-living cells as well as by bacteroids of Bradyrhizobium japonicum USDA 110 (K.J. Miller, R.S. Gore, R. Johnson, A.J. Benesi, V.N. Reinhold [1990] J Bacteriol 172: 136-142; R.S. Gore and K.J. Miller [1993] Plant Physiol 102: 191-194). These molecules share structural features with glucan fragments isolated from the mycelial cell wall of the soybean (Glycine max) pathogen Phytophthora megasperma. These latter glucans have been shown to be potent elicitors (at nanogram levels) of the phytoalexin glyceollin in G. max. Using the well-characterized soybean cotyledon bioassay, we now show that the cyclic [beta]-1,6-1,3-glucans of B. japonicum USDA 110 are also biologically active elicitors of glyceollin production (but at microgram levels). We further show that both classes of [beta]-glucans elicit the production of the isoflavone daidzein within soybean cotyledon wound droplets.  相似文献   

14.
Functional chvA and chvB genes are required for attachment of Agrobacterium tumefaciens to plant cells, an early step in crown gall tumor formation. Strains defective in these loci do not secrete normal amounts of cyclic beta-1,2-glucan. Whereas chvB is required for beta-1,2-glucan synthesis, the role of chvA in glucan synthesis or export has not been clearly defined. We found that cultures of chvA mutants contained as much neutral beta-1,2-glucan in the cell pellets as did the wild type, with no detectable accumulation of glucan in the culture supernatant. The cytoplasm of chvA mutant cells contained over three times more soluble beta-1,2-glucan than did the cytoplasm of the wild-type parent. Unlike the wild type, chvA mutants contained no detectable periplasmic glucan. The amino acid sequence of chvA is highly homologous to the sequences of bacterial and eucaryotic export proteins, as observed previously in the case of ndvA, a rhizobial homolog of chvA. Strong sequence homology within this family of export proteins is concentrated in the carboxy-terminal portions of the proteins, but placement of consensus ATP-binding sites, internal signal sequences, and hydrophobic domains are conserved over their entire lengths. These data suggest a model for beta-1,2-glucan synthesis in A. tumefaciens in which glucan is synthesized inside the inner membrane with the participation of ChvB and transported across the inner membrane with the participation of ChvA.  相似文献   

15.
Sinorhizobium meliloti strain 1021 possesses the particularity to synthesize biologically inefficient capsular polysaccharides (KPS). It has been assumed that this class of compounds is not produced in high-molecular-mass (HMM) forms, even if many genetic analyses show the existence of expression of genes involved in the biosynthesis of capsular polysaccharides. The expression of these genes that are involved in the export of a KPS throughout the membrane and in the attachment of a lipid moiety has never been related to a structurally characterized surface polysaccharide. It is now reported that S. meliloti strain 1021 produces low-molecular-mass polysaccharides (4-4.5 kDa) that are exclusively composed of beta-(2-->7)-linked 3-deoxy-d-manno-oct-2-ulopyranosonic acid (Kdo) residues. These compounds are considered precursor molecules of HMM KPS, whose biosynthesis is arrested in the case of S. meliloti strain 1021. For the first time, the phospholipid anchor of a rhizobial KPS has been found, and its structure could be partially identified-namely, a phosphoglycerol moiety bearing a hydroxy-octacosanoic acid. When compared to other rhizobial KPS (composed of dimeric hexose-Kdo-like sugar repeating units), the Kdo homopolymer described here may explain why a complementation of S. meliloti strain 1021 Exo B mutant with an effective rkpZ gene restoring an active higher KPS size does not completely lead to the fully effective nitrogen fixing phenotype.  相似文献   

16.
【目的】分析一株分离自黑龙江省的苜蓿根瘤菌在低磷胁迫及正常磷含量条件下细胞膜脂的组成,并从该菌中克隆和鉴定细胞膜无磷脂二酰基甘油三甲基高丝氨酸(DGTS)合成基因。【方法】分别在不同磷含量的Sherwood基本培养基中进行根瘤菌培养,采用Bligh-Dyer方法提取细胞膜脂,以文献报道Sinorhizobium meliloti(苜蓿中华根瘤菌)菌株1021的脂类图谱和磷脂PE、PG、PC标准品作为参照,利用薄层层析方法分析不同磷含量条件下培养菌株的细胞膜脂组成。根据GenBank中已发表的DGTS合成基因btaA和btaB序列设计引物,以产DGTS菌株基因组DNA为模板,扩增btaA和btaB同源基因,并在E.coil BL21(DE3)表达。同时检测表达菌株是否合成细胞膜无磷脂DGTS以验证基因功能。对菌株17560进行16S rRNA基因序列分析。【结果】分离自黑龙江省的苜蓿根瘤菌17560与Sinorhizobium meliloti的16S rRNA基因序列相似性高达99.8%,但其细胞膜脂组成明显不同于参比菌株Sinorhizobium meliloti 1021的膜脂组成。在低磷胁迫条件下,该菌株的细胞膜脂主要由OL和DGTS等无磷脂组成,但OL的组成明显不同,该菌株含有3种不同类型的鸟氨酸脂(OLs),而参比菌株Sinorhizobium meliloti 1021只含有一种类型的鸟氨酸脂(OL)。在正常磷含量条件下,该菌株的细胞膜脂主要由PE和一种未知的含氨基磷脂组成,PG与PC的含量均较少,而参比菌株Sinorhizobium meliloti 1021的细胞膜脂主要由PE、PG与PC组成。通过PCR扩增从产DGTS菌株17560中获得1 913 bpDNA片段,经序列分析发现其中有两个ORF与菌株Sinorhizobium meliloti 1021的btaA和btaB基因序列相似性均为99%。将该DNA片段克隆于pET-30a(+)得到重组质粒pLH01,转化宿主菌获得表达菌株E.coli BL21(DE3).pLH01,经IPTG诱导后产生相对分子量约为45 kD和25 kD的蛋白。薄层层析验证重组菌细胞膜脂组成,结果表明,表达菌株E.coliBL21(DE3).pLH01可以在IPTG诱导后合成无磷脂DGTS,而转入空载体pET-30a(+)的阴性对照菌株E.coli BL21(DE3).pET-30a(+)则不能合成。【结论】系统发育地位相同的苜蓿根瘤菌株的细胞膜脂组成明显不同;苜蓿根瘤菌的细胞膜组成随培养基中的磷含量不同而变化,低磷胁迫条件下其细胞膜脂主要由OL和DGTS等无磷脂组成;在Sinorhizobium膜脂中首次发现一种未知的氨基磷脂及3种不同类型的鸟氨酸脂(OLs);从菌株17560中克隆获得2个DGTS合成基因btaA和btaB,在大肠杆菌中成功表达,并证实了所表达基因的功能。  相似文献   

17.
The synthesis of cyclic beta-(1,2)-glucans from UDP-[14C]glucose by a crude membrane preparation and whole cells of Rhizobium leguminosarum bv. trifolii TA-1 was investigated. The crude membrane system needed Mn2+, ATP, and NAD+ for optimal activity. Hardly any difference in biosynthetic activity between membrane fractions of TA-1 cells grown in the presence (200 mM) or absence of NaCl was observed. Whole TA-1 cells grown in the presence of NaCl excreted labeled, neutral cyclic beta-(1,2)-glucan during incubation with added UDP-[14C]glucose. With NaCl-free cultured TA-1 cells, no excretion was observed; however, after these cells were alternately frozen and thawed eight times, they excreted glucans. Glucan formation in vitro and glucan excretion by whole cells were strongly inhibited in the presence of 50 mg of cyclic glucan per ml (about 15 mM), indicating that biosynthesis of cyclic beta-(1,2)-glucans in strain TA-1 is controlled by end-product inhibition. These observations indicate that TA-1 cells become more permeable to cyclic glucans at high NaCl concentrations. The constant loss of glucans from cells grown in the presence of 200 mM NaCl prevented end-product inhibition and resulted in glucan accumulation of up to 1,600 mg/liter in the medium.  相似文献   

18.
The pathways of polysaccharide biosynthesis were investigated in cells of Sinorhizobium meliloti (strain Su47) using a stable isotope approach. The isotopic labeling of the periplasmic beta-1,2-glucans synthesized from glucose labeled at various positions evidenced the involvement of catabolic pathways, namely the pentose-phosphate and Entner-Doudoroff pathways, into the early steps of polysaccharide synthesis. The exopolysaccharides produced at the same time had a labeling pattern similar to that of the beta-glucans, indicating similar early steps for both polysaccharides. The results emphasized a cyclic organization of the carbohydrate metabolism in S. meliloti, in which the carbons of the initial hexose were allowed to re-enter the catabolic pathways many times. The metabolic incidences of such metabolic topology are discussed.  相似文献   

19.
beta-(1----2)-Glucan, an unusual cyclic oligosaccharide, can be isolated from the periplasm of bacteria belonging to the family Rhizobiaceae. Data presented here suggest that the periplasmic beta-(1----2)-glucan of Rhizobium meliloti plays a major role in osmotic adaptation. First, growth of R. meliloti in a low-osmolarity medium causes a large accumulation of periplasmic beta-(1----2)-glucan. Second, mutations in the ndv genes, which prevent this accumulation of beta-(1----2)-glucan, reduce cell growth rates under low-osmolarity conditions and cause several other phenotypic changes indicative of an altered or stressed surface. Third, growth of the ndv mutants can be restored by raising the osmolarity of the medium with the addition of a variety of ionic or nonionic compounds. The phenotypic changes associated with the cell surface of the mutants can also be substantially suppressed by increasing the medium osmolarity. On the basis of these data and general considerations about the periplasmic space in gram-negative bacteria, we suggest a mechanism of hypoosmotic adaptation in R. meliloti in which beta-(1----2)-glucan plays an essential role.  相似文献   

20.
The cyclic β-(1,2)-glucans of Rhizobium meliloti and Agrobacterium tumefaciens play an important role during hypoosmotic adaptation, and the synthesis of these compounds is osmoregulated. Glucosyltransferase, the enzyme responsible for cyclic β-(1,2)-glucan biosynthesis, is present constitutively, suggesting that osmotic regulation of the biosynthesis of these glucans occurs through modulation of enzyme activity. In this study, we examined regulation of cyclic glucan biosynthesis in vitro with membrane preparations from R. meliloti. The results show that ionic solutes inhibit glucan synthesis, even when they are present at low concentrations (e.g., 10 mM). In contrast, neutral solutes (glucose, sucrose, and the compatible solutes glycine betaine and trehalose) were found to stimulate glucan synthesis in vitro when they were present at high concentrations (e.g., 1 M). Furthermore, high concentrations of these neutral solutes were shown to compensate for the inhibition of glucosyltransferase activity by ionic solutes. Consistent with their ionic character, the compatible solute potassium glutamate and the osmoprotectant choline chloride inhibited glucosyltransferase activity in vitro. The results suggest that intracellular ion concentrations, intracellular osmolarity, and intracellular concentrations of nonionic compatible solutes all act as important determinants of glucosyltransferase activity in vivo. Additional experiments were performed with an ndvA mutant defective for transport of cyclic glucans and an ndvB mutant that produces a C-terminal truncated glucosyltransferase. Cyclic β-(1,2)-glucan biosynthesis, although reduced, was found to be osmoregulated in both mutants. These results reveal that NdvA and the C terminus of NdvB are not required for osmotic regulation of cyclic β-(1,2)-glucan biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号