首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recombination nodules (RNs) are closely correlated with crossing over, and, because they are observed by electron microscopy of synaptonemal complexes (SCs) in extended pachytene chromosomes, RNs provide the highest-resolution cytological marker currently available for defining the frequency and distribution of crossovers along the length of chromosomes. Using the maize inbred line KYS, we prepared an SC karyotype in which each SC was identified by relative length and arm ratio and related to the proper linkage group using inversion heterozygotes. We mapped 4267 RNs on 2080 identified SCs to produce high-resolution maps of RN frequency and distribution on each bivalent. RN frequencies are closely correlated with both chiasma frequencies and SC length. The total length of the RN recombination map is about twofold shorter than that of most maize linkage maps, but there is good correspondence between the relative lengths of the different maps when individual bivalents are considered. Each bivalent has a unique distribution of crossing over, but all bivalents share a high frequency of distal RNs and a severe reduction of RNs at and near kinetochores. The frequency of RNs at knobs is either similar to or higher than the average frequency of RNs along the SCs. These RN maps represent an independent measure of crossing over along maize bivalents.  相似文献   

2.
M I Pigozzi  A J Solari 《Génome》1999,42(2):315-321
The total number of recombination nodules (RNs) in the autosomal synaptonemal complexes (SCs) is statistically equivalent in oocytes and spermatocytes from the domestic pigeon Columba livia. The distribution on RNs along the three longest autosomes is also equivalent in oocytes and spermatocytes. The numbers of RNs show a linear relationship when plotted against SC length both in oocytes and spermatocytes. On the other hand, the ZW pair shows a single and strictly localized RN near the synaptic termini, but the ZZ pair shows unrestricted location of RNs (average 3.8). The ZW and ZZ pairs of the pigeon are euchromatic and do not show specific chromatin packing at pachytene in either sex. The lack of sex-specific differences in the number and location of RNs in the autosomal bivalents of C. livia and previous data on the chicken, suggest that the regulation of crossing-over is basically different in birds and mammals.  相似文献   

3.
Recombination nodules in the oocytes of the chicken, Gallus domesticus   总被引:2,自引:0,他引:2  
Chicken oocytes at pachytene were processed with the microspreading technique (Moses, 1977), and their synaptonemal complex (SC) complements were analyzed by electron microscopy. Ellipsoidal nodules, 140 X 120 nm in diameter, were associated with the central space of synaptonemal complexes. The average number of nodules per pachytene oocyte was 57.5. The number of nodules per bivalent showed a clear linear relationship with SC length, except for the microchromosomes, which showed a single obligatory nodule. The distribution of nodules along the 10 longest SCs was nonrandom, with low frequencies in the vicinity of kinetochores and high frequencies near the telomeres. The microchromosomes showed a single nodule whose average location was 1.21 micron from the kinetochore. In the ZW pair there was a single nodule whose average location was 0.31 micron from the paired telomeres and not more than 0.65 micron from them. The total number of nodules per cell and the number of nodules in each of the five major bivalents showed good agreement with the total number of chiasmata and the number of chiasmata of the major bivalents of roosters. Thus, these nodules share the characteristics of recombination nodules described in other organisms. The single, obligatory, strictly localized recombination nodule found in the pairing end of the ZW pair strongly suggests that recombination between the Z and W chromosomes in the female chicken is a regular process that may be similar to the obligatory recombination between the pairing ends of the human X and Y chromosomes that was recently described in studies using DNA probes.  相似文献   

4.
Synaptonemal complex karyotype of zebrafish   总被引:4,自引:0,他引:4  
Wallace BM  Wallace H 《Heredity》2003,90(2):136-140
Meiotic cells of zebrafish have been prepared to show synaptonemal complexes (SCs) by light and electron microscopy. Completely paired SCs from both spermatocytes and oocytes were measured to produce an SC karyotype. The SC karyotype resembles the somatic karyotype of zebrafish and has no recognisable sex bivalent. Measurements of total SC length indicate that SCs grow longer and develop centromeres during pachytene. Oocytes consistently have longer SCs than spermatocytes, presumably correlated with the reported higher recombination frequency in females than in males.  相似文献   

5.
S M Stack  D Roelofs 《Génome》1996,39(4):770-783
Allium porrum L. (cultivated leek) (2n = 4x = 32) is a fertile tetraploid that forms bivalents with pericentric chiasmata at metaphase I. To investigate the basis of this unusual behavior for a tetraploid, we describe the karyotype, axial cores, synaptonemal complexes (SCs), and meiotic nodules of A. porrum. The karyotype appears to be autotetraploid. This conclusion is also supported by presynaptic alignment of axial cores in groups of four and partner trades between pairs of SCs. Numerous early nodules are distributed all along axial cores and SCs during zygonema, but they are lost by late zygonema - early pachynema. Late (recombination) nodules (RNs) are present on SCs near kinetochores throughout the remainder of pachynema. This pattern of RNs corresponds to the pattern of pericentric chiasmata. Pachytene quadrivalents usually are resolved into bivalents because partner trades between SC lateral elements rarely occur between RNs on the same segment of SC. Thus, the patterns of crossing-over and partner trades promote balanced disjunction and high fertility in autotetraploid A. porrum. Rare quadrivalents observed at metaphase I must be due to infrequent partner trades between RNs. Polycomplexes, unusual in their number and size, were observed during zygonema. Key words : synaptonemal complex, recombination nodules, localized chiasmata, polycomplex, Allium porrum.  相似文献   

6.
This work describes the first report about the occurrence of recombination nodules (RNs) in spread pachytene cells of two species of Coleoptera: Palembus dermestoides (Tenebrionidae) and Epicauta atomaria (Meloidae). The RNs were observed in preparations contrasted with phosphotungstic acid. Considering RN morphology and its occurrence in pachytene bivalents (one per autosome bivalent) these structures were interpreted to be late RNs. P. dermestoides and E. atomaria have 2n = 20 chromosomes including an Xy(p) sex determination system. In spite of most frequently subtelocentric morphology observed in the autosomes of both species, the occurrence of RNs is limited only to the synaptonemal complex (SC) structure of the long arms. These findings are in agreement with those obtained using light microscopy analysis in which only one chiasma or terminalization event is observed per autosomal bivalent in early or late metaphase I cells. The RNs have the same average width of the SC of each analyzed species, a circular shape, strong electron density, and are observed mainly between the lateral elements of the SC. The RNs of P. dermestoides and E. atomaria have approximately the same average size (width), 180 +/- 20 nm and 160 +/- 80 nm, respectively. The absence of RNs in the short arms and its occurrence in the long arms are discussed considering the short arm pericentromeric and pro-centric heterochromatin.  相似文献   

7.
Human male recombination maps for individual chromosomes   总被引:21,自引:0,他引:21       下载免费PDF全文
Meiotic recombination is essential for the segregation of chromosomes and the formation of normal haploid gametes, yet we know very little about the meiotic process in humans. We present the first (to our knowledge) recombination maps for every autosome in the human male obtained by new immunofluorescence techniques followed by centromere-specific multicolor fluorescence in situ hybridization in human spermatocytes. The mean frequency of autosomal recombination foci was 49.8+/-4.3, corresponding to a genetic length of 2,490 cM. All autosomal bivalents had at least one recombination focus. In contrast, the XY bivalent had a recombination focus in 73% of nuclei, suggesting that a relatively large proportion of spermatocytes may be at risk for nondisjunction of the XY bivalent or elimination by meiotic arrest. There was a very strong correlation between mean length of the synaptonemal complex (SC) and the number of recombination foci per SC. Each bivalent presented a distinct distribution of recombination foci, but in general, foci were near the distal parts of the chromosome, with repression of foci near the centromere. The position of recombination foci demonstrated positive interference, but, in rare instances, foci were very close to one another.  相似文献   

8.
By using serial sectioning and a new hypotonic bursting technique on primary microsporocytes of tomato (Lycopersicon esculentum), relatively large numbers of recombination nodules (RNs) are observed on the synaptonemal complexes forming during zygonema. In pachynema most, but not all, of these RNs are lost. If RNs represent sites of potential crossing over during zygonema and sites of actual crossing over during late pachynema, the observed temporal and spatial distribution of RNs may provide answers for some classic cytogenetic questions such as: how is at least one crossover per bivalent assured? How are crossovers localized? What is the basis for positive chiasma interference?  相似文献   

9.
Two kinds of "recombination nodules" in Neurospora crassa   总被引:2,自引:0,他引:2  
M Bojko 《Génome》1989,32(2):309-317
Two morphological types of recombination nodules, termed early and late, are recognized in Neurospora crassa. Eighty nuclei at different substages were used to determine numbers of nodules per nucleus, distribution of nodules along the nucleolus-organizing chromosome, and distribution of nodules among the two largest chromosomes. Early nodules appear at the synaptonemal complex at early zygotene and increase in number during zygotene until a dramatic reduction occurs at zygotene-pachytene transition. Thereafter early nodules are steadily eliminated until they disappear by diplotene. Late nodules are also present during zygotene. Their number doubles at the zygotene-pachytene transition and stays at this level until diplotene. The total number of nodules is rather constant through zygotene and pachytene. Distribution of bivalents with 0, 1, 2, etc. nodules follows a Poisson distribution at zygotene, but not at pachytene, where variance is less than the mean, indicating positive interference. Nodules are distributed nonrandomly along the nucleolus-organizer bivalent. The pattern differs slightly in nuclei of different origin. Nuclei with unusual synaptonemal complexes sustain normal levels of recombination by having the same amount of nodules as normal nuclei. In abnormal nuclei nodules are preferentially associated with normal segments. It is proposed that early nodules do not participate in any form of recombination but have a role in finding an appropriate site for a crossing-over event. Morphological change to the late type indicates that the site has been reached and the exchange event can be mediated by the late nodule.  相似文献   

10.
An oocyte in Drosophila melanogaster originates from 1 of 16 cells comprising an ovarial syncytium. The two pro-oocytes proceed into the pachytene stage of meiosis, but only one develops further into a mature oocyte while the other reverts to a nurse cell. It is known that pro-nurse cells also enter meiosis, as they contain incomplete synaptonemal complexes (SCs). We now show that these cells also harbour recombination nodules (RNs). In cells that only occasionally contain SC segments, the RNs are typically not located close to distinct tripartite SC structures. Instead, these RNs are frequently associated with a spherical body of amorphous material and two to three, more or less parallel fibres, possibly representing SC material. The significance of the solitary RNs is discussed in relation to the present knowledge of the assembly and disassembly of the SC.  相似文献   

11.
The distribution of recombination nodules (RNs) is reported from observations on two-dimensional spreads of Locusta migratoria and Chloealtis conspersa spermatocytes; C. conspersa is a known example of a species with terminally localized chiasmata, while L. migratoria has nonspecific positioning of chiasmata. Measurements of the distances from 102 RNs to the ends of the synaptonemal complexes (SCs) on which they were found show the RNs to be near-terminally localized in C. conspersa and to occur along the lengths of the SCs in L. migratoria. Thus, the localization of RNs appears to reflect the localization of chiasmata. These observations are interpreted as support for the proposed recombinant function of RNs.  相似文献   

12.
Synaptic behaviour and recombination nodules in the human XY pair   总被引:4,自引:0,他引:4  
Alberto J. Solari 《Genetica》1988,77(2):149-158
A sample of 90 XY pairs from men with normal karyotypes has been analyzed by measuring their morphological features in electron micrographs of microspread spermatocytes. The classification of human XY types (Solari, 1980) has been given stricter definitions. Stepwise splitting of the axes is seen in types 1 and 2. The development of axial branches and lenhthening of the X axis is seen in type 3. In the two subtypes a and b of type 4 the net-like filamentous array grows in length to a maximum (average=59.7 m) in subtype b. The location of the putative Y kinetochore defines a short arm that measures 22.34% of Y axis length, and the kinetochore of the X axis defines a short arm of 38.15% of the axial length. The average number of excrescences in the X axis is 19.9 and in the Y is 4.3. The frequency of a non-homologous, distal end-joining grows steadily from type 0 to type 3. The average length of the synaptonemal complex (SC) in 51 XY pairs of types 1 and 2 is 1.33 m (SD=0.65) and it corresponds to 25.54% of the Y axis length. Thus, the average SC covers the short arm of the Y and the pericentromeric region. Maximum lengths of this SC may reach up to 81.8% of the Y axis, 30 recombination nodules (RNs) were located in 26 XY pairs, and 90% of the nodules are located in the distal half of the short arm of the Y axis. Thus, RNs are restricted to a segment much shorter than the length of the average SC. A gradient of decreasing probability of recombination may reach up to the centromeric region of the Y chromosome. Some possible consequences of these facts are discussed.  相似文献   

13.
The analysis of whole-mount preparations of synaptonemal complexes (SCs) from surface-spread spermatocytes of A. peninsulae (2n = 48A + 1, 2, ... 12 B) had revealed SCs of 23 autosomal bivalents, sex bivalent XY, axial cores and SCs of the B-chromosomes. The intercellular and interindividual variability of the number of B-chromosomes varied from 1 to 12 per cell. The SCs of autosomal bivalents were shown to have a typical structure. The structure and behaviour of SCs of sex bivalent throughout meiotic prophase I appeared to be similar to those observed in other species of this order. Mainly B-univalents and less frequently B-bivalents containing SCs were found to be formed in meiotic prophase I. The full homologues appear to be rarely seen among B-chromosomes of the East-Asiatic mouse. A tendency of forming clusters of B-univalents near the sex bivalent was found, in addition to B-bivalents with lateral elements, having the form of bi- and tri-stranded elements with rare synaptic fragments. Besides this, the SCs of the autosomes of pachytene cells were found to contain structures resembling the recombination nodules.  相似文献   

14.
联会复合体免疫荧光技术在全基因减数分裂遗传重组研究中具有精确和直观的优势.本研究通过免疫荧光染色方法制备小鼠精母细胞联会复合体,研究其形态组成与遗传重组特征,展示雄性小鼠遗传重组图谱并分析其重组位点(MLH1位点)的分布特征.4只小鼠共145个精母细胞在平均每个细胞的MLH1位点数为23.3±2.4;在常染色体联会复合体中,未发现有3个MLH1位点的联会复合体,具有1个MLH1位点的联会复合体较多,平均为14.2;无XY联会复合体的细胞占所有细胞的4.1%,XY联会复合体上有MLH1位点的细胞占30.2%;联会复合体上有裂缝的细胞占0.7%.通过联会复合体免疫荧光染色可以清晰地分辨出联会复合体(红色)、着丝粒(蓝色)和MLH1位点(绿色),是遗传重组分析的一种强有力工具.  相似文献   

15.
16.
Meiotic prophase in rye was investigated by serial-section reconstruction of pollen mother cell nuclei. In the mid-late zygotene nucleus, all lateral elements were continuous from telomere to telomere, and 9–20 pairing initiation sites per bivalent were observed. Chromosome and bivalent interlockings detected during zygotene were resolved at early pachytene when pairing was completed. In the three pachytene nuclei, the relative synaptonemal complex (SC) lengths and arm ratios were found to be in good correlation with light microscopic data of pachytene bivalents. Spatial tracing of the bivalents showed that they occupy separate areas in the nucleus. Three types of recombination nodules were observed: large, ellipsoïdal and small nodules at early pachytene and irregularly shaped nodules mainly associated with chromatin at late pachytene. Their number and position along the bivalents correlated well with the number and distribution of chiasmata. The classification of the seven bivalents was based on arm ratio and heterochromatic knob distribution.  相似文献   

17.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

18.
Schmekel K 《Chromosoma》2000,109(1-2):110-116
Several gene products involved in meiotic chromosome pairing and recombination in yeast have been identified in recent years. Two nuclear structures play key roles in the meiotic processes: the synaptonemal complex (SC), which is essential for the pairing of the chromosomes, and the recombination nodules (RNs), which mark the sites of recombination. Good morphological representation of the yeast SC and RNs is needed in order to show structural changes caused by specific mutations in protein-coding genes and for fine localization of proteins using immunoelectron microscopy (immuno-EM). This paper presents a newly developed preparation method for EM and immuno-EM that allows analysis of fine structural details and localization of proteins in the SC and RNs in yeast. Structural components of the SC are clearly seen and appear strikingly similar to those in the SC in other organisms. Antibodies against the SC protein Zip1, a transverse filament protein, label the central region of the SC strongly and specifically as expected. The improved method will be an important tool in high-resolution determination of the location of proteins in the meiotic yeast nucleus. Received: 9 March 1999; in revised form: 1 September 1999 / Accepted: 22 September 1999  相似文献   

19.
The karyotype with C-, G- and NOR-banding of Arctocephalus australis is reported for the first time. The chromosomal number is 2n = 36. The X chromosome, identified in G-banded metaphases from males, is metacentric and the Y chromosome is a minute chromosome, also metacentric. Pachytene spermatocytes were used for synaptonemal complexes analysis with a surface spreading technique. A total of 17 autosomal synaptonemal complexes are observed plus the XY pair. During early pachytene, the X and Y axes are thickened and remain unpaired. As pachytene advances, a short SC is formed between the gonosomes, as it is common among eutherian mammals. The particular asymmetrical appearance of the synaptonemal complex in the sex pair is described and compared to other cases among mammals.  相似文献   

20.
H Wallace  B M Wallace 《Génome》1995,38(6):1105-1111
The longest chromosome (number 1) of Trituturus cristatus carries a heteromorphic segment, a heterozygosity perpetuated by a balanced lethal system. The heteromorphic segment is regarded as achiasmate and has been claimed to be asynaptic. Direct observations of chromosome pairing in spermatocytes and oocytes yield some cases where all homologous chromosomes appear to be completely paired, but the individual bivalents could not be identified as pachytene is not particularly clear in this species. The long arms of bivalent 1 usually remain attached by a terminal chiasma in spermatocytes of T. c. cristatus but the corresponding chiasma is only rarely present in T. c. carnifex spermatocytes. Synaptonemal complexes have been measured in both spermatocytes and oocytes of T. c. cristatus. A karyotype constructed from these measurements matches the main features of somatic and lampbrush chromosome karyotypes, indicating that all chromosomes must be completely paired and proportionately represented as synaptonemal complex. The total length of synaptonemal complex is much the same in spermatocytes and oocytes and is similar to the length in spermatocytes of Xenopus laevis. These two amphibian examples supplement a recent survey of other vertebrate classes to reinforce its conclusion that synaptonemal complex length is not related to genome size in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号