首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive negative ion chemical ionization (NCI) gas chromatographic–mass spectrometric (GC–MS) method was modified for the quantitation of valproic acid (VPA) metabolites generated from in vitro cDNA-expressed human microsomal cytochrome P450 incubations. The use of the inherent soft ionization nature of electron-capture NCI to achieve high sensitivity enabled us to conduct kinetic studies using small amounts of recombinant human P450 enzymes. The assay is based on the selective ion monitoring of the intense [M−181] fragments of pentafluorobenzyl (PFB) esters in the NCI mode, and has the following features: (1) a micro-extraction procedure to isolate VPA metabolites from small incubation volumes (100 μl); (2) a second step derivatization with tert.-butyldimethylsilylating reagents to enhance sensitivity for hydroxylated metabolites; (3) a short run-time (<30 min) while maintaining full separation of 15 VPA metabolites by using a narrow-bore non-polar DB-1 column plus a new temperature gradient; and (4) good reproducibility and accuracy (intra- and inter-assay RSDs <15%, bias <15%) by using seven deuterated derivatives of analytes as internal standards. The derivatives of mono- and diunsaturated metabolites, like the parent drug, produced abundant [M−181] ions while the hydroxylated metabolites gave an ion at m/z of 273, corresponding to the [M−181] ion of the tert.-butyldimethylsilyl ethers. In conclusion, the GC–NCI-MS analysis of valproate metabolites provided us with a high resolution and sensitivity necessary to conduct metabolic and kinetic studies of valproic acid in small volume samples typical of the in vitro cDNA-expressed micro-incubation enzymatic systems.  相似文献   

2.
An improved gas chromatography-mass spectrometry method has been applied to the quantitation of both in vitro and in vivo products of lipid peroxidation in rat liver stimulated with carbon tetrachloride. The method avoids problems of autoxidation of unsaturated fatty acids during sample preparation, and the sensitivity permits assays on as little as 1 mg of tissue. This permits small samples of tissue to be obtained by biopsy from the same organ, thus making it possible to perform in vivo time studies on a single animal. Lipids from whole tissue or cell preparations are simultaneously extracted and reduced by catalytic hydrogenation and then saponified and derivatized to their pentafluorobenzyl esters and trimethylsilyl ethers. Quantitation is accomplished by negative ion chemical ionization gas chromatography-mass spectrometry, using either deuterated compounds or naturally occurring fatty acid metabolites as internal standards. Hydroxy fatty acids which result from reduction of the hydroperoxides of arachidonic and docosapentaenoic acids are found to increase within 20 min after exposure of liver or hepatocyte suspensions to carbon tetrachloride.  相似文献   

3.
Oleic acid, cis-9-octadecenoic acid, is the major fatty acid in mammals. Its oxide, cis-9,10-epoxyoctadecanoic acid (cis-EODA), has been identified in blood and urine of humans, its origin is, however, still unknown. Lipid peroxidation and enzyme-catalyzed epoxidation of oleic acid are two possible sources. In the present article, we investigated by HPLC and GC-MS whether cis-EODA is formed enzymatically from oleic acid by the cytochrome P450 (CYP) system. Oleic acid, cis-EODA and its hydratation product threo-9,10-dihydroxyoctadecanoic acid (threo-DiHODA) were quantitated by HPLC as their p-bromophenacyl esters. For structure elucidation by GC-MS, the pentafluorobenzyl (PFB) esters of these compounds were isolated by HPLC and converted to their trimethylsilyl ether derivatives. Liver microsomes of rats, rabbits and humans oxidized oleic acid into cis-EODA. This is the first direct evidence for the enzymatic formation of cis-EODA from oleic acid. The epoxidation of oleic acid was found to depend on CYP, NADPH+H(+), and O(2). cis-EODA was measurable in incubates of liver microsomes for up to 30 min of incubation. Maximum cis-EODA concentrations were reached after 5-7 min of incubation and found to depend upon oleic acid concentration. Isolated rat hepatocytes hydratated cis-EODA into threo-DiHODA which was further converted to unknown metabolites. However, from incubation of oleic acid with these cells we could not detect threo-DiHODA or cis-EODA. Our study suggests that circulating and excretory cis-EODA may originate, at least in part, from CYP-catalyzed epoxidation of oleic acid. GC-MS of intact cis-EODA as its PFB ester in the negative-ion chemical ionization mode should be useful in investigating the physiological role of cis-EODA in man.  相似文献   

4.
A stable isotope dilution assay for the simultaneous determination of two metabolites of prostacyclin (1), 6-oxo-prostaglandin F1 alpha (2a) and 2,3-dinor-6-oxo-prostaglandin F1 alpha (3a), in human seminal fluid and human urine is described. A new chemical total synthesis of deuterated internal standard, 18,18,19,19-(2H4)-2,3-dinor-6-oxo-PGF1 alpha (3b), is presented and enables specific and sensitive quantification based on negative ion chemical ionization mass spectrometry. 2a and 3a were analysed as their methoxime pentafluorobenzyl ester tris(trimethylsilyl) ether derivatives in the selected ion monitoring mode registrating the [M-181]- fragments with a detection limit for both prostanoids of 10 pg per injection. The two metabolites occur in human seminal fluid in very low concentrations (2a: 2.8 ng ml-1; 3a: 1.7 ng ml-1) and cannot contribute significantly to the urinary metabolite levels which are in the range of 108-265 ng/24 h for 3a and 124-574 ng/24 h for 2a.  相似文献   

5.
Structural determination of polyunsaturated fatty acids by gas chromatography-mass spectrometry (GC-MS) requires currently the use of nitrogen containing derivatives such as picolinyl esters, 4,4-dimethyloxazoline or pyrrolidides derivatives. The derivatization is required in most cases to obtain low energy fragmentation that allows accurate location of the double bonds. In the present work, the following metabolites of rumelenic (cis-9,trans-11,cis-15 18:3) acid, from rat livers, were identified: cis-8,cis-11,trans-13,cis-17 20:4, cis-5,cis-8,cis-11,trans-13,cis-17 20:5, cis-7,cis-10,cis-13,trans-15,cis-19 22:5, and cis-4,cis-7,cis-10,cis-13,trans-15,cis-19 22:6 acids by GC-MS as their 4,4-dimethyloxazoline and methyl esters derivatives. Specific fragmentation of the methyl ester derivatives revealed some similarity with their corresponding DMOX derivatives. Indeed, intense ion fragments at m/z=M+-69, corresponding to a cleavage at the center of a bis-methylene interrupted double bond system were observed for all identified metabolites. Moreover, intense ion fragments at m/z=M+-136, corresponding to allylic cleavage of the n-12 double bonds were observed for the C20:5, C22:5, C22:6 acid metabolites. For the long chain polyunsaturated fatty acids from the rumelenic metabolism, we showed that single methyl esters derivatives might be used for both usual quantification by GC-FID and identification by GC-MS.  相似文献   

6.
Combined capillary gas-liquid chromatography-electron capture negative chemical ionization mass spectrometry of pentafluorobenzyl ester-TMSi ether derivatives of bile acids and isotope dilution using deuterated internal standards are introduced as a sensitive and selective analysis technique for plasma bile acids. As a result of the high ionization efficiency of pentafluorobenzyl derivatives under electron capturing conditions and minimal fragmentation, the detection limit of this technique is low: 1 pg for each bile acid. The high sensitivity enabled the detection and quantitation of atypical bile acids in 200-microliters aliquots of plasma from fasting healthy adults as exemplified by trihydroxycoprostanic acid (0.002 +/- 0.001 mumol/l) and dihydroxycoprostanic acid (0.013 +/- 0.002 mumol/l).  相似文献   

7.
Cultured C6 glioma cells rapidly incorporate and metabolize the essential fatty acids, 18:2(n-6) and 18:3(n-3), to 20- and 22-carbon polyunsaturated fatty acids. Using several deuterated fatty acid substrates we have obtained data that suggest alternate pathways, one possibly involving delta 8-desaturation, may exist in glioma cells for formation of 20:5(n-3) and 22:6(n-3) from 18:3(n-3). With 18:3(n-3)-6,6,7,7-d4 practically no 18:4(n-3)-6,7-d2 or 20:4(n-3)-8,9-d2 was detected whereas 20:3(n-3)-8,8,9,9-d4 accounted for 3.4% and delta 5,11,14,17-20:4-8,8,9,9-d4 for 21.1% of the total deuterated fatty acids recovered in phospholipids after a 16 h incubation; 20:5(n-3)-8,9-d2, 22:5(n-3)-10,11-d2, and 22:6(n-3)-10,11-d2 accounted for 42.4%, 13.2%, and 2.8% of deuterated acyl chains, respectively. When added exogneously, 20:3-8,8,9,9,-d4 was extensively converted to delta 5,11,14,17-20:4(n-3)-8,8,9,9-d4 (45%) and 20:5(n-3)-8,9-d2 (24%); a small amount (4%) of 18:3(n-3)-d4 also was detected. Both 20:4(n-3)-8,9-d2 and 18:4(n-3)-12,13,15,16-d4 were also converted to 20:5(n-3) and 22:6(n-3) with 8 and 0% of the respective original deuterated substrate remaining after 16 h. A possible pathway for 18:3(n-3) metabolism in glioma cells is described whereby an initial chain elongation step is followed by successive delta 5 and delta 8 desaturation reactions resulting in 20:5(n-3) formation and accounting for the ordered removal of deuterium atoms. Alternatively, extremely effective retroconversion may occur to chain shorten 20:3(n-3)-d4 to 18:3(n-3)-d4 followed by rapid conversion through the classical desaturation and chain elongation sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A highly sensitive and specific assay based on gas chromatography/electron capture negative ion chemical ionization mass spectrometry has been developed for the analysis of the enantiomers of hexobarbital and its major metabolites in human urine and plasma. S-(+)-(5-2H3)hexobarbital and R-(-)-(5-2H3)hexobarbital were synthesized for clinical studies along with (+/-)-(1,5-2H6)hexobarbital and the deuterated major metabolites for use as internal and reference standards. Hexobarbital enantiomers and their metabolites were analyzed after pentafluorobenzyl and trimethylsilyl derivatization, following solid-phase extraction from plasma and urine. Intense negative ion spectra were observed for all of the derivatives. The base peak in the spectra corresponded to the M-pentafluorobenzyl anion [M-PFB]- except for 1,5-dimethylbarbituric acid, where M-. was the most abundant ion. The applicability of the method was demonstrated by following the plasma concentration-time profiles and urinary excretion in a male extensive metabolizer of mephenytoin who was given a pseudoracemic oral dose of hexobarbital containing equal 50 mg amounts of S-(+)-2(H0)hexobarbital and R-(-)-(2H3)hexobarbital. Marked stereoselective disposition was observed, with the R-(-)-enantiomer being more efficiently metabolized, primarily by alicyclic oxidation and ring cleavage.  相似文献   

9.
A new method has been developed for the quantitation of lipid peroxidation products by gas chromatography-mass spectrometry. An important advantage over existing gas chromatography-mass spectrometry methods is the elimination of autoxidation during sample preparation. The sensitivity is sufficient to permit measurement of lipid peroxidation products under normal physiological conditions on as little as 1 mg of tissue. Lipids from whole tissue samples or cell preparations are reduced by catalytic hydrogenation during extraction. The hydrogenation stabilizes the compounds by saturating the double bonds and reducing the hydroperoxides to hydroxy derivatives. The saturated lipids are then saponified and the resulting fatty acids are converted to pentafluorobenzyl esters. Hydroxy fatty acids are further converted to trimethylsilyl ether derivatives. Quantitation is accomplished by negative ion chemical ionization gas chromatography-mass spectrometry, using deuterated internal standards. Specific products from polyunsaturated fatty acids can be quantitated, and the method differentiates between products produced by free-radical and photooxidation mechanisms. Increased levels of lipid peroxidation products, above normal physiological levels, that result from prooxidant conditions, such as exposure of animals to carbon tetrachloride, can be measured.  相似文献   

10.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

11.
Little is known about the uptake or metabolism of essential fatty acids (EFAs) in various mammalian organs. Thus, the distribution of deuterated alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) and their metabolites was studied using a stable isotope tracer technique. Rats were orally administered a single dose of a mixture (20 mg each) of ethyl D5-18:3n-3 and D5-18:2n-6, and 25 tissues per animal were analyzed for D5-labeled PUFAs at 4, 8, 24, 96, 168, 240, 360, and 600 h after dosing. Plasma, stomach, and spleen contained the highest concentrations of labeled precursors at the earliest time points, whereas other internal organs and red blood cells reached their maximal concentrations at 8 h. The time-course data were consistent with liver metabolism of EFAs, but local metabolism in other tissues could not be ruled out. Brain, spinal cord, heart, testis, and eye accumulated docosahexaenoic acid with time, whereas skin accumulated mainly 20:4n-6. On average, approximately 16-18% of the D5-18:3n-3 and D5-18:2n-6 initial dosage was eventually accumulated in tissues, principally in adipose, skin, and muscle. Approximately 6.0% of D5-18:3n-3 and 2.6% of D5-18:2n-6 were elongated/desaturated and stored, mainly in muscle, adipose, and the carcass. The remaining 78% of both precursors was apparently catabolized or excreted.  相似文献   

12.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

13.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 150 elderly males from the island of Crete. The subjects were survivors of the Greek Seven Countries Study group. The mean age was 84 years. The number of subjects with complete data on all variables studied was 63. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the short form of the Geriatric Depression Scale (GDS-15). Depression correlated negatively with adipose tissue alpha-linolenic acid (C18:3n-3). Depressed subjects had significantly reduced (-10.5%) adipose tissue C18:3n-3 levels than non-depressed subjects. The observed negative relation between adipose tissue C18:3n-3 and depression, in the present study, appears to indicate increasing long-term dietary C18:3n-3 intakes with decreasing depression. This agrees with findings of other studies indicating an inverse relation between depression and consumption of fish and n-3 polyunsaturated fatty acids. This is the first literature report of a relation between adipose tissue C18:3n-3 and depression. Furthermore, this is the first report of a relation between adipose PUFA and depression in an elderly sample. Depression has been reported to be associated with elevated cytokines, such as, IL-1, IL-2, IL-6, INF-gamma and INF-alpha. Fish oil and omega-3 fatty acids, on the other hand, have been reported to inhibit cytokine production. The observed negative relation between adipose C18:3n-3 and depression, therefore, may stem from the inhibiting effect of C18:3n-3 or its long-chain metabolites on cytokine synthesis.  相似文献   

14.
Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g-1 FW, while amounts of PAA were considerably higher (347–451 pmol g-1 FW) and the level of IPA was quite low (5 pmol g-1 FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.Abbreviations IAA 3-indoleacetic acid - 4Cl-IAA 4-chloro-3-indoleacetic acid - IBA 3-indolebutyric acid - IPA 3-indolepropionic acid - PAA phenylacetic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PFB pentafluorobenzyl ester - PFBBr pentafluorobenzyl bromide - SIM single-ion monitoring - TMSI trimethylsilyl ester  相似文献   

15.
A method for quantification of unlabeled alpha-tocopherol and the deuterated tocopherols, RRR-alpha-5-(CD(3))-tocopherol (d(3)RRR) and all rac-alpha-5,7-(CD(3))(2) tocopherol (d(6)all-rac) in plasma by HPLC-tandem mass spectrometry (LC-MS/MS) has been developed. Deuterated and unlabeled alpha-tocopherols were separated by HPLC and were detected by positive ion multiple-reaction monitoring using a triple-quadrupole mass spectrometer equipped with a heated nebulizer-atmospheric pressure chemical ionization interface, following routine extraction of vitamin E from plasma. The accuracy and precision were evaluated by replicate analysis of standards and samples. Human plasma samples, which were obtained at different times after the subject had consumed a capsule containing 1:1 ratio of d(3)RRR and d(6)all rac-alpha-tocopheryl acetates, were analyzed with this method. Plasma deuterated alpha-tocopherols measured by LC-MS/MS followed the same pattern as previously demonstrated by GC-MS measurement, without requiring an extra derivitization step. The detection limit was 10 pmol for each form of alpha-tocopherol injected.  相似文献   

16.
Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.  相似文献   

17.
In order to study the biomarker fatty acids of symbionts in the marine sponge Halichondria panicea, purification and structural identification of two new 2-methyl branched monoenoic very long fatty acids (2-Me-24:1 n-7 and 2-Me-26:1 n-9) were performed for the first time. These acids amounted to 7.1% of total sponge FAs, but our attempts to determine their structures by one-step GC-MS analysis were unsuccessful because of low yields of the correspondent N-acyl pyrrolidide derivatives. Silver-ion thin-layer chromatography isolated enriched fractions of monoenoic fatty acids extracted from the sponge. Further purification of unknown fatty acid methyl esters was carried out by reversed-phase high-performance liquid chromatography. Determination of the chain length, degree and position of unsaturations was achieved by gas chromatography-mass spectrometry on methyl esters and dimethyldisulfide adducts. Structures, position of methyl substitution, and double bonds cis isomery were confirmed by 1H nuclear magnetic resonance.  相似文献   

18.
Parallel analysis of platelet-activating factor (PAF) using chemical ionization gas chromatography-mass spectrometry after direct derivatization with pentafluorobenzoyl chloride (PFB) and heptafluorobutyric anhydride (HFB) provides a facile and highly sensitive means for detecting and elucidating the structure of the numerous alkyl-chain homologs of this acetylated phospholipid autacoid. In the present study, the PFB derivative was used for initial electron capture negative ion chemical ionization analysis of PAF candidate molecules in human PMN extracts of unknown composition. Subsequent pulsed positive ion/electron capture negative ion chemical ionization evaluation of the HFB derivative furnished a measure of the molecular weight from [MH]+ and yielded the required structural information from characteristic negative ions, in particular [M-(2HF + ketene)]- and [M-(HF + acetic acid)]-. These procedures easily permitted confirmation of the presence of C16:0-, C17:0-, C18:0-, and C18:1-AGEPC (acetyl glyceryl ether phosphocholine) in extracts of stimulated human PMN and also demonstrated that the C17:0- homolog was comprised of both straight-chain and branch-chain varieties.  相似文献   

19.
Quantitative analysis of fatty acids (FAs) is an important area of analytical biochemistry. Ultra high sensitivity FA analysis usually is done with gas chromatography of pentafluorobenzyl esters coupled to an electron-capture detector. With the popularity of electrospray ionization (ESI) mass spectrometers coupled to liquid chromatography, it would be convenient to develop a method for ultra high sensitivity FA detection using this equipment. Although FAs can be analyzed by ESI in negative ion mode, this method is not very sensitive. In this study, we demonstrate a new method of FA analysis based on conversion of the carboxylic acid to an amide bearing a permanent positive charge, N-(4-aminomethylphenyl)pyridinium (AMPP) combined with analysis on a reverse-phase liquid chromatography column coupled to an ESI mass spectrometer operating in positive ion mode. This leads to an ∼60,000-fold increase in sensitivity compared with the same method carried out with underivatized FAs. The new method is about 10-fold more sensitive than the existing method of gas chromatography/electron-capture mass spectrometry of FA pentafluorobenzyl esters. Furthermore, significant fragmentation of the precursor ions in the nontag portion improves analytical specificity. We show that a large number of FA molecular species can be analyzed with this method in complex biological samples such as mouse serum.  相似文献   

20.
This paper reports the positional distribution of fatty acids in triacylglycerols (TAG) of Artemia franciscana nauplii enriched with each of palmitic (16:0), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3), eicosapentaenoic (20:5n-3), and docosahexaenoic (22:6n-3) acid ethyl esters. TAG extracted from the enriched and unenriched nauplii were subjected to regiospecific analysis to determine the fatty acid compositions of the sn-1(3) and sn-2 positions of TAG. In the unenriched nauplii, 16:0, 18:1n-9, and 18:2n-6 were preferentially located in the sn-1(3) position followed by the sn-2 position [i.e. sn-1(3)>sn-2], whereas 18:3n-3 was concentrated in the sn-2 position [i.e. sn-2>sn-1(3)]. Contents of 20:5n-3 and 22:6n-3 were low. After the nauplii were enriched with each of the ethyl esters for 18 h, fatty acid fed to the nauplii showed higher content in the sn-1(3) position than in the sn-2 position [i.e. sn-1(3)>sn-2]. Distribution pattern of 18:3n-3 changed from sn-2>sn-1(3) to sn-1(3)>sn-2 during the enrichment with 18:3n-3 ethyl ester. Increases in all of the fatty acids in TAG were attributed to that in the sn-1(3) position much more than that in the sn-2 position. Artemia nauplii appear to be characterized by preferential incorporation of exogenous fatty acids into the sn-1(3) position of TAG, even though endogenous fatty acids are esterified in the opposite position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号