首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.  相似文献   

2.
Dammai V  Subramani S 《Cell》2001,105(2):187-196
Peroxisomal targeting signals (PTSs) are recognized by predominantly cytosolic receptors, Pex5p and Pex7p. The fate of these PTS receptors following their interactions on the peroxisomal membrane with components of docking and putative translocation complexes is unknown. Using both novel and multiple experimental approaches, we show that human Pex5p does not just bind cargo and deliver it to the peroxisome membrane, but participates in multiple rounds of entry into the peroxisome matrix and export to the cytosol independent of the PTS2 import pathway. This unusual shuttling mechanism for the PTS1 receptor distinguishes protein import into peroxisomes from that into most other organelles, with the exception of the nucleus.  相似文献   

3.
We have studied how Pex5p recognizes peroxisomal targeting signal type 1 (PTS1)-containing proteins. A randomly mutagenized pex5 library was screened in a two-hybrid setup for mutations that disrupted the interaction with the PTS1 protein Mdh3p or for suppressor mutations that could restore the interaction with Mdh3p containing a mutation in its PTS1. All mutations localized in the tetratricopeptide repeat (TPR) domain of Pex5p. The Pex5p TPR domain was modeled based on the crystal structure of a related TPR protein. Mapping of the mutations on this structural model revealed that some of the loss-of-interaction mutations consisted of substitutions in alpha-helices of TPRs with bulky amino acids, probably resulting in local misfolding and thereby indirectly preventing binding of PTS1 proteins. The other loss-of-interaction mutations and most suppressor mutations localized in short, exposed, intra-repeat loops of TPR2, TPR3, and TPR6, which are predicted to mediate direct interaction with PTS1 amino acids. Additional site-directed mutants at conserved positions in intra-repeat loops underscored the importance of the loops of TPR2 and TPR3 for PTS1 interaction. Based on the mutational analysis and the structural model, we put forward a model as to how PTS1 proteins are selected by Pex5p.  相似文献   

4.
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcohol oxidase could be detected as long as 6 d after injection. Coinjection of synthetic peptides containing a consensus carboxyterminal tripeptide peroxisomal targeting signal resulted in abolition of alcohol oxidase transport into vesicles in all cell lines examined. Double-label experiments indicated that, although some of the alcohol oxidase was transported into vesicles that contained other peroxisomal proteins, the bulk of the alcohol oxidase did not appear to be transported to preexisting peroxisomes. While the inhibition of transport of alcohol oxidase by peptides containing the peroxisomal targeting signal suggests a competition for some limiting component of the machinery involved in the sorting of proteins into peroxisomes, the organelles into which the majority of the protein is targeted appear to be unusual and distinct from endogenous peroxisomes by several criteria. Microinjected alcohol oxidase was transported into vesicles in normal fibroblasts and also in cell lines derived from patients with Zellweger syndrome, which are unable to transport proteins containing the ser-lys-leu-COOH peroxisomal targeting signal into peroxisomes (Walton et al., 1992). The implications of this result for the mechanism of peroxisomal protein transport are discussed.  相似文献   

5.
We have studied Hansenula polymorpha Pex5p and Pex20p, peroxins involved in peroxisomal matrix protein import. In vitro binding experiments suggested that H. polymorpha Pex5p and Pex20p physically interact. We used single particle electron microscopy (EM) to analyze the structure of purified Pex5p and its possible association with Pex20p. Upon addition of Pex20p, a multimeric Pex20p complex was observed to be associated to the periphery of the Pex5p tetramer. In this Pex5p-Pex20p complex, the conformation of tetrameric Pex5p had changed from a closed conformation with a diameter of 115A into an open conformation of 134A. EM also indicated that the Pex5p-Pex20p complex was capable to bind native, folded catalase, a peroxisomal PTS1 protein. This suggests that the Pex5p-Pex20p complex may be functional as receptor complex.  相似文献   

6.
To examine the function of the amino-terminal presequence of rat peroxisomal 3-ketoacyl-CoA thiolase precursor, fusion proteins of various amino-terminal regions of the precursor with non-peroxisomal enzymes were expressed in cultured mammalian cells. On immunofluorescence microscopy, all constructs carrying the presequence part exhibited punctate patterns of distribution, identical with that of catalase, a peroxisomal marker. Proteins lacking all or a part of the prepiece were found in the cytosol. These results indicate that the presequence of the thiolase has sufficient information for peroxisomal targeting.  相似文献   

7.
PEX genes encode proteins (peroxins) that are required for the biogenesis of peroxisomes. One of these peroxins, Pex5p, is the receptor for matrix proteins with a type 1 peroxisomal targeting signal (PTS1), which shuttles newly synthesized proteins from the cytosol into the peroxisome matrix. We observed that in various Saccharomyces cerevisiae pex mutants disturbed in the early stages of PTS1 import, the steady-state levels of Pex5p are enhanced relative to wild type controls. Furthermore, we identified ubiquitinated forms of Pex5p in deletion mutants of those PEX genes that have been implicated in recycling of Pex5p from the peroxisomal membrane into the cytosol. Pex5p ubiquitination required the presence of the ubiquitin-conjugating enzyme Ubc4p and the peroxins that are required during early stages of PTS1 protein import. Finally, we provide evidence that the proteasome is involved in the turnover of Pex5p in wild type yeast cells, a process that requires Ubc4p and occurs at the peroxisomal membrane. Our data suggest that during receptor recycling a portion of Pex5p becomes ubiquitinated and degraded by the proteasome. We propose that this process represents a conserved quality control mechanism in peroxisome biogenesis.  相似文献   

8.
The suicide inactivation mechanism of tyrosinase acting on its substrates has been studied. The kinetic analysis of the proposed mechanism during the transition phase provides explicit analytical expressions for the concentrations of o-quinone against time. The electronic, steric and hydrophobic effects of the substrates influence the enzymatic reaction, increasing the catalytic speed by three orders of magnitude and the inactivation by one order of magnitude. To explain the suicide inactivation, we propose a mechanism in which the enzymatic form E(ox) (oxy-tyrosinase) is responsible for such inactivation. A key step might be the transfer of the C-1 hydroxyl group proton to the peroxide, which would act as a general base. Another essential step might be the axial attack of the o-diphenol on the copper atom. The rate constant of this reaction would be directly related to the strength of the nucleophilic attack of the C-1 hydroxyl group, which depends on the chemical shift of the carbon C-1 (delta(1)) obtained by (13)C-NMR. Protonation of the peroxide would bring the copper atoms together and encourage the diaxial nucleophilic attack of the C-2 hydroxyl group, facilitating the co-planarity with the ring of the copper atoms and the concerted oxidation/reduction reaction, and giving rise to an o-quinone. The suicide inactivation would occur if the C-2 hydroxyl group transferred the proton to the protonated peroxide, which would again act as a general base. In this case, the co-planarity between the copper atom, the oxygen of the C-1 and the ring would only permit the oxidation/reduction reaction on one copper atom, giving rise to copper(0), hydrogen peroxide and an o-quinone, which would be released, thus inactivating the enzyme.  相似文献   

9.
Peroxisomal biogenesis disorders (PBDs) are caused by mutations in 12 distinct genes that encode the components of the peroxisome assembly machinery. Three mutations in the gene encoding Pex5p, the peroxisomal targeting signal type-1 (PTS1) receptor, have been reported, each associated with a disorder of the Zellweger spectrum of different severity. Here, we report studies of the affinities of mutated forms of Pex5p for a series of PTS1 peptides and conclude that PTS1-affinity reductions are correlated with disease severity and cell biological phenotype. A quantitative model has been developed that allows estimation of the dissociation constants for complexes with a wide range of PTS1 sequences bound to wild-type and mutant Pex5p. In the context of this model, the binding measurements suggest that no PTS1-containing proteins are targeted by Pex5p(N489K) and only a relatively small subset of PTS1-containing proteins with the highest affinity for Pex5p are targeted to peroxisomes by Pex5p(S563W). Furthermore, the results of the analysis are consistent with an approximate dissociation constant threshold near 500 nM required for efficient protein targeting to peroxisomes.  相似文献   

10.
We have identified a novel mitochondrial targeting signal in the precursor of the DNA helicase Hmi1p of Saccharomyces cerevisiae that is located at the C terminus of the protein. Similar to classical N-terminal presequences, this C-terminal targeting signal consists of a stretch of positively charged amino acids that has the potential to form an amphipathic alpha-helix. Deletion of the C-terminal 36 amino acids of helicase resulted in loss of import into mitochondria, while deletion of the N-terminal 40 amino acids had no effect. When C-terminal regions of the helicase were placed at the C terminus of a passenger protein, dihydrofolate reductase, the resulting fusion proteins were directed into the mitochondrial matrix, and the C-terminal region of helicase became proteolytically processed. Import of helicase occurs in a C- to N-terminal direction; it requires a membrane potential and the TIM17-23 translocase together with mitochondrial Hsp70. Helicase is the only mitochondrial matrix protein identified thus far with a cleavable targeting signal at its C terminus.  相似文献   

11.
We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1.  相似文献   

12.
Plant peroxisomal proteins catalyze key metabolic reactions. Several peroxisome biogenesis PEROXIN (PEX) genes encode proteins acting in the import of targeted proteins necessary for these processes into the peroxisomal matrix. Most peroxisomal matrix proteins bear characterized Peroxisomal Targeting Signals (PTS1 or PTS2), which are bound by the receptors PEX5 or PEX7, respectively, for import into peroxisomes. Here we describe the isolation and characterization of an Arabidopsis peroxin mutant, pex7-1, which displays peroxisome-defective phenotypes including reduced PTS2 protein import. We also demonstrate that the pex5-1 PTS1 receptor mutant, which contains a lesion in a domain conserved among PEX7-binding proteins from various organisms, is defective not in PTS1 protein import, but rather in PTS2 protein import. Combining these mutations in a pex7-1 pex5-1 double mutant abolishes detectable PTS2 protein import and yields seedlings that are entirely sucrose-dependent for establishment, suggesting a severe block in peroxisomal fatty acid beta-oxidation. Adult pex7-1 pex5-1 plants have reduced stature and bear abnormally shaped seeds, few of which are viable. The pex7-1 pex5-1 seedlings that germinate have dramatically fewer lateral roots and often display fused cotyledons, phenotypes associated with reduced auxin response. Thus PTS2-directed peroxisomal import is necessary for normal embryonic development, seedling establishment, and vegetative growth.  相似文献   

13.
We have studied Hansenula polymorpha Pex5p and Pex8p using fluorescence correlation spectroscopy (FCS). Pex5p is the Peroxisomal Targeting Signal 1 (PTS1) receptor and Pex8p is an intraperoxisomal protein. Both proteins are essential for PTS1 protein import and have been shown to physically interact. We used FCS to analyze the molecular role of this interaction. FCS is a very sensitive technique that allows analysis of dynamic processes of fluorescently marked molecules at equilibrium in a very tiny volume. We used this technique to determine the oligomeric state of both peroxins and to analyze binding of Pex5p to PTS1 peptides and Pex8p. HpPex5p and HpPex8p were overproduced in Escherichia coli, purified by affinity chromatography, and, when required, labeled with the fluorescent dye Alexa Fluor 488. FCS measurements revealed that the oligomeric state of HpPex5p varied, ranging from monomers at slightly acidic pH to tetramers at neutral pH. HpPex8p formed monomers at all pH values tested. Using fluorescein-labeled PTS1 peptide and unlabeled HpPex5p, we established that PTS1 peptide only bound to tetrameric HpPex5p. Upon addition of HpPex8p, a heterodimeric complex was formed consisting of one HpPex8p and one HpPex5p molecule. This process was paralleled by dissociation of PTS1 peptide from HpPex5p, indicating that Pex8p may play an important role in cargo release from the PTS1 receptor. Our data show that FCS is a powerful technique to explore dynamic physical interactions that occur between peroxins during peroxisomal matrix protein import.  相似文献   

14.
Identification of the peroxisomal targeting signal for cottonseed catalase   总被引:5,自引:3,他引:2  
Catalase is a ubiquitous peroxisomal matrix enzyme, yet the molecular targeting signal(s) for sorting it in plant cells has not been defined. The most common peroxisome targeting signal (PTS) is a C-terminal tripeptide composed of a conserved SKL motif (type 1 PTS). The PTS for cottonseed catalase (Ccat) was elucidated in this study from immunofluorescence microscopic analyses of tobacco BY-2 suspension cells serving as an in vivo import system. To distinguish biolistically introduced Ccat from endogenous tobacco catalase, Ccat was hemagglutinin (HA) epitope-tagged at its N-terminus. Bombardment with HA-Ccat resulted in the import of Ccat into glyoxysomes, the specialized type of peroxisome in BY-2 cells. The C-terminal tripeptide of Ccat, PSI, is necessary for import. Evidence for this were mislocalizations to the cytosol of PSI-truncated Ccat and AGV-substituted (for PSI) Ccat. PSI-COOH, however, was not sufficient to re-route chloramphenicol acetyltransferase (CAT) from the cytosol to glyoxysomes, whereas the Ccat tetrapeptide RPSI-COOH was sufficient. Surprisingly, substitution of K (common at the fourth position in other plant catalases) for the R (CAT-KPSI) decreased import efficiency. However, substitution of K did not affect import, when additional upstream residues in Ccat were included (e.g. CAT-NVKPSI). Other evidence for the importance of upstream residues comprised abolishment of Ccat import due to substitutions with non-conserved residues (e.g. -AGVNVRPSI for -SRLNVRPSI). These data indicate that Ccat is sorted to plant peroxisomes by a degenerate type 1 PTS (PSI-COOH) whose residues are functionally dependent on a strict context of adjacent C-terminal amino acid residues.  相似文献   

15.
In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.  相似文献   

16.
Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed.In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.  相似文献   

17.
The faithful inheritance of organelles by daughter cells is essential to maintain the benefits afforded to eukaryotic cells by compartmentalization of biochemical functions. In Saccharomyces cerevisiae, the class V myosin, Myo2p, is involved in transporting different organelles, including the peroxisome, along actin cables to the bud. We identified Inp2p as the peroxisome-specific receptor for Myo2p. Cells lacking Inp2p fail to partition peroxisomes to the bud but are unaffected in the inheritance of other organelles. Inp2p is a peroxisomal membrane protein, preferentially enriched in peroxisomes delivered to the bud. Inp2p interacts directly with the globular tail of Myo2p. Cells overproducing Inp2p often transfer their entire populations of peroxisomes to buds. The levels of Inp2p oscillate with the cell cycle. Organelle-specific receptors like Inp2p explain how a single motor can move different organelles in distinct and specific patterns. To our knowledge, Inp2p is the first peroxisomal protein implicated in the vectorial movement of peroxisomes.  相似文献   

18.
In mammals, targeting of newly synthesized peroxisomal matrix proteins to the organelle requires Pex5p, the peroxisomal cycling receptor. Pex5p is a multidomain protein involved in a complex network of transient protein-protein interactions. Besides interacting directly with most peroxisomal proteins en route to the organelle, Pex5p has also binding domains for several components of the peroxisomal docking/translocation machinery. However, our knowledge of how binding of a cargo protein to Pex5p influences its properties is still rather limited. Here, we describe a protease assay particularly useful for identifying and characterizing protein-protein interactions involving human Pex5p. Binding of a PTS1-containing peptide/protein to Pex5p as well as the interaction of this peroxin with the Src homology domain 3 of Pex13p could be easily demonstrated using this assay. To address the possible effects of these Pex5p-interacting peptides/proteins on the assumed quaternary structure of Pex5p, we have analyzed the hydrodynamic properties of human Pex5p using size exclusion chromatography, sucrose gradient centrifugation, and sedimentation equilibrium centrifugation. Our results show that Pex5p is a monomeric protein with an abnormal shape. The implications of these findings on current models of protein translocation across the peroxisomal membrane are discussed.  相似文献   

19.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

20.
The import of a subset of peroxisomal matrix proteins is mediated by the peroxisomal targeting signal 2 (PTS2). The results of our sequence and physical property analysis of known PTS2 signals and of a mutational study of the least characterized amino acids of a canonical PTS2 motif indicate that PTS2 forms an amphipathic helix accumulating all conserved residues on one side. Three-dimensional structural modeling of the PTS2 receptor PEX7 reveals a groove with an evolutionarily conserved charge distribution complementary to PTS2 signals. Mammalian two-hybrid assays and cross-complementation of a mutation in PTS2 by a compensatory mutation in PEX7 confirm the interaction site. An unstructured linker region separates the PTS2 signal from the core protein. This additional information on PTS2 signals was used to generate a PTS2 prediction algorithm that enabled us to identify novel PTS2 signals within human proteins and to describe KChIP4 as a novel peroxisomal protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号