首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent peroxisomal probes were developed by fusing green fluorescent protein (GFP) to the matrix peroxisomal targeting signals PTS1 and PTS2, as well as to an integral peroxisomal membrane protein (IPMP). These proteins were used to identify and characterize novel peroxisome assembly (pas) mutants in the yeast Pichia pastoris. Mutant cells lacking the PAS10 gene mislocalized both PTS1-GFP and PTS2-GFP to the cytoplasm but did incorporate IPMP-GFP into peroxisome membranes. Similar distributions were observed for endogenous peroxisomal matrix and membrane proteins. While peroxisomes from translocation-competent pas mutants sediment in sucrose gradients at the density of normal peroxisomes, >98% of peroxisomes from pas10 cells migrated to a much lower density and had an extremely low ratio of matrix:membrane protein. These data indicate that Pas10p plays an important role in protein translocation across the peroxisome membrane. Consistent with this hypothesis, we find that Pas10p is an integral protein of the peroxisome membrane. In addition, Pas10p contains a cytoplasmically-oriented C3HC4 zinc binding domain that is essential for its biological activity.  相似文献   

2.
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.  相似文献   

3.
Two peroxisomal targeting signals, PTS1 and PTS2, are involved in the import of proteins into the peroxisome matrix. Human patients with fatal generalized peroxisomal deficiency disorders fall into at least nine genetic complementation groups. Cells from many of these patients are deficient in the import of PTS1-containing proteins, but the causes of the protein-import defect in these patients are unknown. We have cloned and sequenced the human cDNA homologue (PTS1R) of the Pichia pastoris PAS8 gene, the PTS1 receptor (McCollum, D., E. Monosov, and S. Subramani. 1993. J. Cell Biol. 121:761-774). The PTS1R mRNA is expressed in all human tissues examined. Antibodies to the human PTS1R recognize this protein in human, monkey, rat, and hamster cells. The protein is localized mainly in the cytosol but is also found to be associated with peroxisomes. Part of the peroxisomal PTS1R protein is tightly bound to the peroxisomal membrane. Antibodies to PTS1R inhibit peroxisomal protein-import of PTS1-containing proteins in a permeabilized CHO cell system. In vitro-translated PTS1R protein specifically binds a serine-lysine-leucine-peptide. A PAS8-PTS1R fusion protein complements the P. pastoris pas8 mutant. The PTS1R cDNA also complements the PTS1 protein-import defect in skin fibroblasts from patients--belonging to complementation group two--diagnosed as having neonatal adrenoleukodystrophy or Zellweger syndrome. The PTS1R gene has been localized to a chromosomal location where no other peroxisomal disorder genes are known to map. Our findings represent the only case in which the molecular basis of the protein-import deficiency in human peroxisomal disorders is understood.  相似文献   

4.
We have cloned and sequenced PAS7, a gene required for peroxisome assembly in the yeast Pichia pastoris. The product of this gene, Pas7p, is a member of the C3HC4 superfamily of zinc-binding proteins. Point mutations that alter conserved residues of the C3HC4 motif abolish PAS7 activity and reduce zinc binding, suggesting that Pas7p binds zinc in vivo and that zinc binding is essential for PAS7 function. As with most pas mutants, pas7 cells exhibit a pronounced deficiency in import of peroxisomal matrix proteins that contain either the type 1 peroxisomal targeting signal (PTS1) or the type 2 PTS (PTS2). However, while other yeast and mammalian pas mutants accumulate ovoid, vesicular peroxisomal intermediates, loss of Pas7p leads to accumulation of membrane sheets and vesicles which lack a recognizable lumen. Thus, Pas7p appears to be essential for protein translocation into peroxisomes as well as formation of the lumen of the organelle. Consistent with these data, we find that Pas7p is an integral peroxisomal membrane protein which is entirely resistant to exogenous protease and thus appears to reside completely within the peroxisome. Our observations suggest that the function of Pas7p defines a previously unrecognized step in peroxisome assembly: formation of the peroxisome lumen. Furthermore, because the peroxisomal intermediates in the pas7 delta mutant proliferate in response to peroxisome-inducing environmental conditions, we conclude that Pas7p is not required for peroxisome proliferation.  相似文献   

5.
PEX genes encode proteins (peroxins) that are required for the biogenesis of peroxisomes. One of these peroxins, Pex5p, is the receptor for matrix proteins with a type 1 peroxisomal targeting signal (PTS1), which shuttles newly synthesized proteins from the cytosol into the peroxisome matrix. We observed that in various Saccharomyces cerevisiae pex mutants disturbed in the early stages of PTS1 import, the steady-state levels of Pex5p are enhanced relative to wild type controls. Furthermore, we identified ubiquitinated forms of Pex5p in deletion mutants of those PEX genes that have been implicated in recycling of Pex5p from the peroxisomal membrane into the cytosol. Pex5p ubiquitination required the presence of the ubiquitin-conjugating enzyme Ubc4p and the peroxins that are required during early stages of PTS1 protein import. Finally, we provide evidence that the proteasome is involved in the turnover of Pex5p in wild type yeast cells, a process that requires Ubc4p and occurs at the peroxisomal membrane. Our data suggest that during receptor recycling a portion of Pex5p becomes ubiquitinated and degraded by the proteasome. We propose that this process represents a conserved quality control mechanism in peroxisome biogenesis.  相似文献   

6.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  相似文献   

7.
We have identified an S. cerevisiae integral peroxisomal membrane protein of M of 42,705 (Pex13p) that is a component of the peroxisomal protein import apparatus. Pex13p's most striking feature is an src homology 3 (SH3) domain that interacts directly with yeast Pex5p (former Pas10p), the recognition factor for the COOH-terminal tripeptide signal sequence (PTS1), but not with Pex7p (former Pas7p), the recognition factor for the NH2-terminal nonapeptide signal (PTS2) of peroxisomal matrix proteins. Hence, Pex13p serves as peroxisomal membrane receptor for at least one of the two peroxisomal signal recognition factors. Cells deficient in Pex13p are unable to import peroxisomal matrix proteins containing PTS1 and, surprisingly, also those containing PTS2. Pex13p deficient cells retain membranes containing the peroxisomal membrane protein Pex11p (former Pmp27p), consistent with the existence of independent pathways for the integration of peroxisomal membrane proteins and for the translocation of peroxisomal matrix proteins.  相似文献   

8.
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome- associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor.  相似文献   

9.
The assembly of proteins in the peroxisomal membrane is a multistep process requiring their recognition in the cytosol, targeting to and insertion into the peroxisomal membrane, and stabilization within the lipid bilayer. The peroxin Pex19p has been proposed to be either the receptor that recognizes and targets newly synthesized peroxisomal membrane proteins (PMP) to the peroxisome or a chaperone required for stabilization of PMPs at the peroxisomal membrane. Differentiating between these two roles for Pex19p could be achieved by determining whether the peroxisomal targeting signal (PTS) and the region of Pex19p binding of a PMP are the same or different. We addressed the role for Pex19p in the assembly of two PMPs, Pex30p and Pex32p, of the yeast Saccharomyces cerevisiae. Pex30p and Pex32p control peroxisome size and number but are dispensable for peroxisome formation. Systematic truncations from the carboxyl terminus, together with in-frame deletions of specific regions, have identified PTSs essential for targeting Pex30p and Pex32p to peroxisomes. Both Pex30p and Pex32p interact with Pex19p in regions that do not overlap with their PTSs. However, Pex19p is required for localizing Pex30p and Pex32p to peroxisomes, because mutations that disrupt the interaction of Pex19p with Pex30p and Pex32p lead to their mislocalization to a compartment other than peroxisomes. Mutants of Pex30p and Pex32p that localize to peroxisomes but produce cells exhibiting the peroxisomal phenotypes of cells lacking these proteins demonstrate that the regions in these proteins that control peroxisomal targeting and cell biological activity are separable. Together, our data show that the interaction of Pex19p with Pex30p and Pex32p is required for their roles in peroxisome biogenesis and are consistent with a chaperone role for Pex19p in stabilizing or maintaining membrane proteins in peroxisomes.  相似文献   

10.
Dammai V  Subramani S 《Cell》2001,105(2):187-196
Peroxisomal targeting signals (PTSs) are recognized by predominantly cytosolic receptors, Pex5p and Pex7p. The fate of these PTS receptors following their interactions on the peroxisomal membrane with components of docking and putative translocation complexes is unknown. Using both novel and multiple experimental approaches, we show that human Pex5p does not just bind cargo and deliver it to the peroxisome membrane, but participates in multiple rounds of entry into the peroxisome matrix and export to the cytosol independent of the PTS2 import pathway. This unusual shuttling mechanism for the PTS1 receptor distinguishes protein import into peroxisomes from that into most other organelles, with the exception of the nucleus.  相似文献   

11.
Among peroxins involved in peroxisome biogenesis, only Pex8p is predominantly intraperoxisomal at steady state. Pex8p is necessary for peroxisomal matrix protein import via the PTS1 and PTS2 pathways. It is proposed to bridge two peroxisomal membrane subcomplexes comprised of the docking (Pex13p, Pex14p, Pex17p) and RING (Pex2p, Pex10p, Pex12p) peroxins and is also implicated in cargo release of PTS1 proteins in the matrix. We show that Pichia pastoris Pex8p (PpPex8p) enters the peroxisome matrix using two redundant pathways in a Pex14p-dependent, but Pex2p-independent, manner, showing that the intact importomer and RING subcomplex are not required for its import. One pathway depends on the TPR motifs in Pex5p, the C-terminal PTS1 sequence (AKL) in PpPex8p, and the intraperoxisomal presence of this peroxin. The alternative pathway uses the PTS2 receptor, Pex7p, its accessory protein, Pex20p, and a putative PTS2 motif in PpPex8p, but does not require intraperoxisomal PpPex8p. Pex20p interaction with PpPex8p is independent of Pex7p, but the interaction of PpPex8p with Pex7p requires Pex20p. These data suggest a direct interaction between PpPex8p and Pex20p. Our studies shed light on the mechanism and evolution of the dual import pathways for PpPex8p.  相似文献   

12.
Protein import into the peroxisome matrix is mediated by peroxisome-targeting signals (PTSs). We have developed a novel, quantitative, in vitro assay for measuring peroxisomal import of PTS1-containing proteins. This enzyme-linked immunosorbent assay-based system utilizes semi-intact human A431 cells or fibroblasts and a biotinylated version of the PTS1-containing import substrate, luciferase. We show that biotinylated luciferase accumulated in peroxisomes in a time- and temperature-dependent fashion, in a reaction stimulated by exogenously added ATP, cytosol, and zinc. No import was detected in fibroblasts from a human patient belonging to complementation group 2, who suffered from the fatal peroxisomal disorder Zellweger syndrome and lacked a functional PTS1 receptor, Pex5p. Also, the reaction was significantly inhibited by antibodies to the zinc-finger protein, Pex2p. Several lines of evidence demonstrate that biotinylated luciferase was imported into the lumen of bona fide peroxisomes. (a) Biochemical fractionation of cells after the import reaction showed a time-dependent accumulation of the import substrate within intracellular organelles. (b) Confocal fluorescence microscopy indicated that imported biotinylated luciferase colocalized with the peroxisomal protein PMP70. (c) Visualization of the imported biotinylated luciferase by indirect fluorescence or indirect immunofluorescence required disruption of the peroxisomal membrane, indicating true import rather than binding to the outside of the organelle.  相似文献   

13.
In humans, defects in peroxisome assembly result in the peroxisome biogenesis disorders (PBDs), a group of genetically heterogeneous, lethal recessive diseases. We have identified the human gene PXAAA1 based upon its similarity to PpPAS5, a gene required for peroxisome assembly in the yeast Pichia pastoris. Expression of PXAAA1 restored peroxisomal protein import in fibroblasts from 16 unrelated members of complementation group 4 (CG4) of the PBD. Consistent with this observation, CG4 patients carry mutations in PXAAA1. The product of this gene, Pxaaa1p, belongs to the AAA family of ATPases and appears to be a predominantly cytoplasmic protein. Substitution of an arginine for the conserved lysine residue in the ATPase domain of Pxaaa1p abolished its biological activity, suggesting that Pxaaa1p is an ATPase. Furthermore, Pxaaa1p is required for stability of the predominantly cytoplasmic PTS1 receptor, Pxr1p. We conclude that Pxaaa1p plays a direct role in peroxisomal protein import and is required for PTS1 receptor activity.  相似文献   

14.
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.  相似文献   

15.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

16.
Pex14 was initially identified as a peroxisomal membrane protein that is involved in docking of the soluble receptor proteins Pex5 and Pex7, which are required for import of PTS1- or PTS2-containing peroxisomal matrix proteins. However, Hansenula polymorpha Pex14 is also required for selective degradation of peroxisomes (pexophagy). Previously we showed that Pex1, Pex4, Pex6 and Pex8 are not required for this process. Here we show that also in the absence of various other peroxins, namely Pex2, Pex10, Pex12, Pex13 and Pex17, pexophagy can normally occur. These peroxins are, like Pex14, components of the peroxisomal translocon. Our data confirm that Pex14 is the sole peroxin that has a unique dual function in two apparent opposite processes, namely peroxisome formation and selective degradation.  相似文献   

17.
Peroxisomal matrix protein import is facilitated by cycling receptors shuttling between the cytosol and the peroxisomal membrane. One crucial step in this cycle is the ATP-dependent release of the receptors from the peroxisomal membrane. This step is facilitated by the peroxisomal AAA (ATPases associated with various cellular activities) proteins Pex1p and Pex6p with ubiquitination of the receptor being the main signal for its export. Here we report that the AAA complex contains dislocase as well as deubiquitinating activity. Ubp15p, a ubiquitin hydrolase, was identified as a novel constituent of the complex. Ubp15p partially localizes to peroxisomes and is capable of cleaving off ubiquitin moieties from the type I peroxisomal targeting sequence (PTS1) receptor Pex5p. Furthermore, Ubp15p-deficient cells are characterized by a stress-related PTS1 import defect. The results merge into a picture in which removal of ubiquitin from the PTS1 receptor Pex5p is a specific event and might represent a vital step in receptor recycling.  相似文献   

18.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

19.
Scavenger receptor class B type I (SR-BI) is an HDL receptor that mediates selective HDL lipid uptake. Peroxisomes play an important role in lipid metabolism and peroxisomal targeting signal type 1 (PTS1)-containing proteins are translocated to peroxisomes by the peroxisomal targeting import receptor, Pex5p. We have previously identified a PTS1 motif in the intracellular domain of rat SR-BI. Here, we examine the possible interaction between Pex5p and SR-BI. Expression of a Flag-tagged intracellular domain of SR-BI resulted in translocation to the peroxisome as demonstrated by double labeling with anti-Flag IgG and anti-catalase IgG analyzed by confocal microscopy. Immunoprecipitation experiments with anti-SR-BI antibody showed that Pex5p co-precipitated with SR-BI. However, when an antibody against Pex5p was used for immunoprecipitation, only the 57kDa, non-glycosylated form, of SR-BI co-precipitated. We conclude that the PTS1 domain of SR-BI is functional and can mediate peroxisomal interaction via Pex5p, in vitro.  相似文献   

20.
We characterize the peroxin PpPex20p from Pichia pastoris and show its requirement for translocation of PTS2 cargoes into peroxisomes. PpPex20p docks at the peroxisomal membrane and translocates into peroxisomes. Its peroxisomal localization requires the docking peroxin Pex14p but not the peroxins Pex2p, Pex10p, and Pex12p, whose absence causes peroxisomal accumulation of Pex20p. Similarities between Pex5p and Pex20p were noted in their protein interactions and dynamics during import, and both contain a conserved NH2-terminal domain. In the absence of the E2-like Pex4p or the AAA proteins Pex1p and Pex6p, Pex20p is degraded via polyubiquitylation of residue K19, and the K19R mutation causes accumulation of Pex20p in peroxisome remnants. Finally, either interference with K48-branched polyubiquitylation or removal of the conserved NH2-terminal domain causes accumulation of Pex20p in peroxisomes, mimicking a defect in its recycling to the cytosol. Our data are consistent with a model in which Pex20p enters peroxisomes and recycles back to the cytosol in an ubiquitin-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号