首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A polysaccharide depolymerase isolated from the phage lysate of Rhizobium trifolii 4S was used to fragment capsular polysaccharides (CPS) and extracellular polysaccharides (EPS) of R. trifolii 0403 into oligosaccharides. These products were analyzed for clover lectin (trifoliin A)-binding ability, effect on infection of white clover root hairs, and changes in glycosyl and noncarbohydrate composition with culture age. The oligosaccharides from CPS of cultures grown on agar plates for 3, 5, and 7 days exhibited lectin-binding ability at levels similar to those of the corresponding intact CPS. The intact EPS did not bind to clover lectin, although the oligosaccharide fragments from EPS did. In contrast, oligosaccharides from deacetylated CPS had less than half the lectin-binding ability of the native polysaccharide substrate. The CPS from 5-day-old cultures, its corresponding oligosaccharide fragments, and the oligosaccharide fragments of EPS from 5-day-old cultures, all at a concentration of 2.5 micrograms per seedling, stimulated infection thread formation in root hairs of clover seedlings inoculated with R. trifolii 0403. Thus, this bacteriophage-induced polysaccharide depolymerase converted the acidic CPS and EPS of R. trifolii 0403 into biologically active oligosaccharides capable of binding trifoliin A and stimulating root hair infection. The amount of the noncarbohydrate substitutions (pyruvate, acetate, and ether-linked 3-hydroxybutyrate) in the CPS oligosaccharides changed with culture age as shown by 1H-nuclear magnetic resonance spectroscopy. The binding of trifoliin A, therefore, appears to be sensitive to changes in the degree of substitution of noncarbohydrate substitutions in the CPS of R. trifolii 0403.  相似文献   

2.
We resolved previous conflicting results concerning the presence of 3-hydroxybutyryl substituents on the extracellular acidic polysaccharide from Rhizobium trifolii 0403. These substituents were indeed present in the polysaccharide and in the oligosaccharide fragments obtained by hydrogen fluoride solvolysis of the extracellular and capsular polysaccharides of the bacteria grown on plates. The 3-hydroxybutyrate substituent could be removed from the polysaccharide by 10 mM sodium deuteroxide without evidence of elimination, indicating that this substituent was ester linked.  相似文献   

3.
Proton nuclear magnetic resonance (1H NMR) and fast atom bombardment mass spectrometric analyses were performed on enzymatically derived oligosaccharides from the acidic excreted polysaccharides (EPS) from representative bacterial strains of the pea-nodulating symbiont, Rhizobium leguminosarum (128C53, 128C63, and 300) and the clover-nodulating symbiont, Rhizobium trifolii (NA-30, ANU843, 0403, TA-1, LPR5035, USDA20.102, and 4S). The results revealed structural similarities and differences between EPS of these two species. Octasaccharide units containing galactose, glucuronic acid, alpha-L-threo-hex-4-enopyranosyluronic acid, and glucose in a molar ratio of 1:1:1:5 were obtained from the EPS of the three R. leguminosarum strains and had the same primary glycosyl sequence and location of pyruvate, acetate, and 3-hydroxybutyrate substituents. About 80% of the galactose residues were acylated with 3-hydroxybutyrate, and there were two acetyl groups per repeating unit distributed between the 2 glucose residues of the main chain-derived sequence of the octasaccharides. In contrast, the R. trifolii strains had varied EPS structures, each of which differed from the common R. leguminosarum EPS structure. The EPS from one group of R. trifolii strains (0403 and LPR5035) most closely resembled the R. leguminosarum EPS but differed in that a lower number of galactose and glucose residues were substituted by 3-hydroxybutyryl and acetyl groups, respectively. The EPS from a second group of R. trifolii strains (ANU843, TA-1, and NA-30) was even more different than the R. leguminosarum EPS. These R. trifolii octasaccharides bore a single acetyl group on O-3 of the glucuronic acid residue. In addition, the level of acylation by 3-hydroxybutyryl groups was 50% of that present in the R. leguminosarum EPS. The remaining two strains of R. trifolii (USDA20.102 and 4S) had very different patterns of acylation to each other and to all of the other strains. The EPS from strain USDA20.102 practically lacked 3-hydroxybutyryl groups and had a unique degree and pattern of acetylation. The oligomers from the EPS of R. trifolii strain 4S completely lacked 3-hydroxybutyryl groups and galactose. The latter EPS contained only one O-1-carboxyethylidene group and had a different degree and pattern of acetylation. Interestingly, these two latter strains differ from the other R. trifolii strains in nodulation rates on rare clover species in the Trifolium cross-inoculation group. Thus, we define several groups of R. trifolii based upon their EPS structures and establish their similarities and distinct differences with the EPS of R. leguminosarum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A symbiotically defective mutant strain of Rhizobium trifolii, UR251, was obtained by transposon Tn5 mutagenesis of R. trifolii 0403 rif and recognized by its partially ineffective (Fix +/-) phenotype on white clover plants. UR251 had a single Tn5 insertion in plasmid DNA, a wild-type plasmid pattern, and no detectable Mu DNA sequences originally present in the vector used for Tn5 mutagenesis. Agglutination by the clover lectin trifoliin A and attachment to clover root hairs was higher with UR251 than with the wild-type strain. The capsular polysaccharide (CPS) of UR251 was altered, as shown by a slower rate of CPS depolymerization with a CPS beta-lyase, PD-I; more pyruvate and less acetate and 3-hydroxybutanoate noncarbohydrate substitutions as quantitated by 1H nuclear magnetic resonance; and a higher pyruvyl transferase activity (enzymatic pyruvylation of lipid-bound saccharides). The site of increased pyruvylation in the CPS of UR251 was on the terminal galactose of the branch of the repeating oligosaccharide unit. These results show that the level of noncarbohydrate substitutions of the CPS as well as pyruvyl transferase activity are altered in R. trifolii UR251 and that trifoliin A-binding ability and clover root hair attachment are improved in this mutant strain of R. trifolii 0403 rif.  相似文献   

5.
The sequence of the glycosyl residues and the anomeric configurations of the glycosyl linkages of the acidic polysaccharides secreted by Rhizobium leguminosarum 128c53, Rhizobium leguminosarum 128c63, Rhizobium trifolii NA30, and Rhizobium trifolii 0403 have been determined. All four polysaccharides were found to have the following glycosyl repeating-unit structure, where galactosyl is Gal, glucosyl is Glc, glucuronosyl is GlcA, and pyruvyl is Pyr: [Formula: see text] Each of the glycosyl residues of these polysaccharides was determined to be in the d configuration and in the pyranose ring form. These results add support to the proposal that R. leguminosarum and R. trifolii have a particularly close genetic relationship. The significance of these results with regard to the possible function of these polysaccharides in the nodulation process is discussed.  相似文献   

6.
Immunofluorescence, quantitative immunoprecipitation, and inhibition of bacterial agglutination and passive hemagglutination indicate that cross-reactive antigenic determinants are present on the surface of Rhizobium trifolii and clover roots. These determinants are immunochemically unique to this Rhizobium-legume cross-inoculation group. The multivalent lectin trifoliin and antibody to the clover root antigenic determinants bind competitively to two acidic heteropolysaccharides isolated from capsular material of R. Trifolii 0403. The major polysaccharide is an antigen which lacks heptose, 2-keto-3-deoxyoctulosonic acid, and endotoxic lipid A. The minor polysaccharide in the capsular material of R. Trifolii 0403 contains the same antigen in addition to heptose, 2-keto-3-deoxyoctonate, and lipid A. The acidic polysaccharides of two strains of R. trifolii share the clover r-ot cross-reactive antigenic determinant despite other differences in their carbohydrate composition. Studies with monovalent antigen-binding fragments of anti-clover root antibody and Azotobacter vinelandii hybrid transformants carrying the unique antigenic determinant suggest that these polysaccharides bind R. trifolii to the clover root hair tips which contain trifoliin.  相似文献   

7.
The interaction between Rhizobium lipopolysaccharide (LPS) and white clover roots was examined. The Limulus lysate assay indicated that Rhizobium leguminosarum bv. trifolii (hereafter called R. trifolii) released LPS into the external root environment of slide cultures. Immunofluorescence and immunoelectron microscopy showed that purified LPS from R. trifolii 0403 bound rapidly to root hair tips and infiltrated across the root hair wall. Infection thread formation in root hairs was promoted by preinoculation treatment of roots with R. trifolii LPS at a low dose (up to 5 micrograms per plant) but inhibited at a higher dose. This biological activity of LPS was restricted to the region of the root present at the time of exposure to LPS, higher with LPS from cells in the early stationary phase than in the mid-exponential phase, incubation time dependent, incapable of reversing inhibition of infection by NO3- or NH4+, and conserved among serologically distinct LPSs from several wild-type R. trifolii strains (0403, 2S-2, and ANU843). In contrast, infections were not increased by preinoculation treatment of roots with LPSs from R. leguminosarum bv. viciae strain 300, R. meliloti 102F28, or members of the family Enterobacteriaceae. Most infection threads developed successfully in root hairs pretreated with R. trifolii LPS, whereas many infections aborted near their origins and accumulated brown deposits if pretreated with LPS from R. meliloti 102F28. LPS from R. leguminosarum 300 also caused most infection threads to abort. Other specific responses of root hairs to infection-stimulating LPS from R. trifolii included acceleration of cytoplasmic streaming and production of novel proteins. Combined gas chromatography-mass spectroscopy and proton nuclear magnetic resonance analyses indicated that biologically active LPS from R. trifolii 0403 in the early stationary phase had less fucose but more 2-O-methylfucose, quinovosamine, 3,6-dideoxy-3-(methylamino)galactose, and noncarbohydrate substituents (O-methyl, N-methyl, and acetyl groups) on glycosyl components than did inactive LPS in the mid-exponential phase. We conclude that LPS-root hair interactions trigger metabolic events that have a significant impact on successful development of infection threads in this Rhizobium-legume symbiosis.  相似文献   

8.
The effect of white clover root exudate on capsules of Rhizobium trifolii 0403 was examined. The clover lectin trifoliin A was detected in root exudate of two clover varieties by indirect immunofluorescence with antibody against this lectin purified from clover seed. Trifoliin A bound uniformly to encapsulated, heat-fixed cells during 1 h of incubation with root exudate. After 4 to 8 h of incubation, trifoliin A was only bound to one pole of the cells. Transmission electron microscopy showed that the capsule itself was altered. The disorganization of the acidic polymers of the capsule began in the equatorial center of the rod-shaped cell and then progressed toward the poles at unequal rates. Trifoliin A could no longer be detected on heat-fixed cells after 12 h of incubation with root exudate. However, trifoliin A was detected in situ on one pole of cells grown for 4 days in the clover root environment of Fahraeus slide cultures. Inhibition studies with the hapten 2-deoxy-d-glucose showed that trifoliin A in root exudate had a higher affinity for one of the cell poles. Immunoelectrophoresis was used to monitor the alteration of the extracellular polysaccharides from R. trifolii 0403 by concentrated root exudate. These polysaccharides were converted into products which eventually lost their ability to immunoprecipitate with homologous antibody. This progressive loss of antigenic reactivity proceeded more rapidly with root exudate from seedlings grown under nitrogen-free conditions than with root exudate from plants grown with 15 mM KNO(3). The root exudate, depleted of trifoliin A by immunoaffinity chromatography, was still able to alter the capsule of R. trifolii 0403. Reconstitution experiments showed that the substance(s) in root exudate which induced this alteration of the capsule was of a high molecular weight, heat labile, trypsin sensitive, and antigenically unrelated to trifoliin A. A variety of glycosidase activities were also detected in the fraction depleted of trifoliin A. These results suggest that enzymes in clover root exudate alter the trifoliin A-binding capsule in a way which would favor polar attachment of R. trifolii to clover root hairs.  相似文献   

9.
The activity of capsular polysaccharide pyruvyltransferase catalyzing the pyruvylation of acidic heteropolysaccharide was measured in Rhizobium trifolii 843 and 0403 rif. This enzyme activity was determined with EDTA-treated cells, uridine diphosphate-sugar precursors, and phosphoenol [1-14C]pyruvate. Activity was measured by the incorporation of radioactivity into organic solvent-soluble glycoconjugates. Enzymatic pyruvylation of capsular polysaccharide occurred from phosphoenolpyruvate at the lipid-bound saccharide stage.  相似文献   

10.
The age-dependent lectin-binding ability of Rhizobium trifolii 0403 capsular polysaccharide (CPS) was examined by following the development of the capsule and its ability to interact with the white clover lectin trifoliin A. Bacteria grown on agar plates for 3, 5, 7, 14, and 21 days were examined by electron microscopy and immunofluorescence microscopy with antibodies prepared against either R. trifolii 0403 CPS or trifoliin A after pretreatment with the lectin. The capsule began to develop at one pole by day 3 and completely surrounded the cells in cultures incubated for 5 days or longer. The capsular polysaccharide on cells cultured for 3 and 5 days was completely reactive with trifoliin A, became noticeably less reactive by day 7, and was only reactive with the lectin at one pole of a few cells after that time. The quantity and location of lectin receptors on bacteria of different ages directly correlated with their attachment in short-term clover root hair-binding studies. Cells from 3- or 21-day-old cultures attached almost exclusively in a polar fashion, whereas cells grown for 5 days attached to root hairs randomly and in the highest numbers. CPS isolated from a 5-day-old culture had higher lectin-binding ability than CPS from 3- and 7-day-old cultures, whereas the CPS from a 14-day-old culture had the lowest. Chemical analyses of the isolated CPS showed changes in the levels of uronic acids (as glucuronic acid), pyruvate, and O-acetyl substitutions with culture age, but the neutral sugar composition remained relatively constant. These results provide evidence that the age-dependent distribution of lectin receptors dictates the level and orientation of attachments of R. trifolii 0403 to clover root hairs.  相似文献   

11.
The surface structure and chemistry of symbiotic bacteria from the genus Rhizobium are probably important for the outcome of the infection of legume hosts. Exopolysaccharide, capsular polysaccharide, lipopolysaccharide and a low-molecular-weight polysaccharide were isolated from R. trifolii UTC 110-1 and R. leguminosarum UTC 114-5 and partially characterized. No or only minor differences in sugar composition could be found for the corresponding fractions from the two organisms. A general method to measure low activities of polymer-degrading enzymes was developed, and used to determine enzyme activities in root extracts of Trifolium repens L. cv. Lena and Pisum xativiini L. cv. Little Marvel against the isolated rhizobial polysaccharides. An enzyme preparation from T. repens partially degraded all polysaccharides isolated from its symbiont R. trifolii while polysaccharides from R. leguminosarum , symbiont of P. sativum , were degraded to a much lesser extent. Correspondingly, an enzyme preparation from P. sativum degraded all polysaccharides isolated from both its symbiont R. leguminosarum and its non-symbiont R. trifolii. The amount of symbiont polysaccharides degraded was larger than the amount of polysaccharides degraded from the non-symbiont R. trifolii.  相似文献   

12.
The specific capsular polysaccharide produced by Rhodococcus equi serotype 4 was found to be a high-molecular-weight acidic polymer composed of D-glucose, D-mannose, pyruvic acid and a previously unidentified 5-amino-3,5-dideoxynonulosonic (rhodaminic) acid in the proportions 2:1:1:1. Structural analysis, employing a combination of microanalytical methods, nuclear magnetic resonance spectroscopy, and mass spectrometric techniques, established that the polysaccharide consisted of linear repeating tetrasaccharide units having the sequence of residues shown below. In the native polysaccharide, the rhodaminic acid residues were present as their acetamido derivatives (RhoANAc) and carried 1-carboxyethylidene groups that bridged the O-7 and O-9 positions. Treatment of the capsular polysaccharide with dilute acetic acid and/or anhydrous hydrogen fluoride under hydrolytic/solvolytic conditions, resulted in the formation of four different oligosaccharide species. The 1H and 13C NMR resonances of these oligosaccharide fragments and of the native serotype 4 capsular polysaccharides were fully assigned by homo- and heteronuclear chemical shift correlation methods.  相似文献   

13.
Klebsiella K14 capsular polysaccharide was degraded by a bacteriophage-borne enzyme to afford oligosaccharides A-C which were studied by one- and two-dimensional n.m.r. spectroscopy. A and B were the repeating-unit hexasaccharide and pyruvylated hexasaccharide, respectively, while C was a dodecasaccharide. Each oligomer was terminated by a reducing mannose and a non-reducing 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid residue, indicating that the phage enzyme had cleaved the beta-D-Manp-(1----4)-beta-D-GlcpA linkages in the polysaccharide by a lyase, rather than the more common glycosidase, activity found with other Klebsiella bacteriophages. In this respect, the depolymerisation resembles those reported for the capsular polysaccharides of Klebsiella K5 and K64  相似文献   

14.
Cross-reactive antigens of clover roots and Rhizobium trifolii were detected on their cell surfaces by tube agglutination, immunofluorescent, and radioimmunoassay techniques. Anti-clover root antiserum had a higher agglutinating titer with infective strains of R. trifolii than with noninfective strains. The root antiserum previously adsorbed with noninfective R. trifolii cells remained reactive only with infective cells, including infective revertants. When adsorbed with infective cells, the root antiserum was reactive with neither infective nor noninfective cells. Other Rhizobium species incapable of infecting clover did not demonstrate surface antigens cross-reactive with clover. Radioimmunoassay indicated twice as much antigenic cross-reactivity of clover roots and R. trifolii 403 (infective) than R. trifolii Bart A (noninfective). Immunofluorescence with anti-R. trifolii (infective) antiserum was detected on the exposed surface of the root epidermal cells and diminished at the root meristem. The immunofluorescent crossreaction on clover roots was totally removed by adsorption of anti-R. trifolii (infective) antiserum with encapsulated infective cells but not with noninfective cells. The cross-reactive capsular antigens from R. trifolii strains were extracted and purified. The ability of these antigens to induce clover root hair deformation was much greater when they were obtained from the infective than noninfective strains. The cross-reactive capsular antigen of R. trifolii 403 was characterized as a high-molecular-weight (greater than 4.6 times 10(6) daltons), beta-linked, acidic heteropolysaccharide containing 2-deoxyglucose, galactose, glucose, and glucuronic acid. A soluble, nondialyzable, substance (clover lectin) capable of binding to the cross-reactive antigen and agglutinating only infective cells of R. trifolii was extracted from white clover seeds. This lectin was sensitive to heat, Pronase, and trypsin. inhibition studies indicated that 2-deoxyglucose was the most probable haptenic determinant of the cross-reactive capsular antigen capable of binding to the root antiserum and the clover lectin. A model is proposed suggesting the preferential adsorption of infective versus noninfective cells of R. trifolii on the surface of clover roots by a cross-bridging of their common surface antigens with a multivalent clover lectin.  相似文献   

15.
Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli have been grown in the presence and absence of 4',5,7-trihydroxyflavonone (naringenin) or 4',5,7-trihydroxyflavone (apigenin), which induce the expression of nodulation genes of the bacteria. The acidic polysaccharides secreted by the Rhizobium were isolated from the culture media and purified. The polysaccharides were cleaved with a bacteriophage enzyme and the octasaccharide repeating units formed were isolated. The glycosyl sequence and type of nonglycosyl substituents of the repeating units derived from a number of these Rhizobium biovars were shown by fast atom bombardment-mass spectroscopy and proton nuclear magnetic resonance spectroscopy (1H NMR) to be identical. Minor variations in the degree of esterification of the repeating units by O-acetyl and O-(3-hydroxybutanoyl) substituents were observed when the Rhizobium were grown in the presence or absence of the flavonoids. The variation in content and the points of attachment of the O-acetyl and O-(3-hydroxybutanoyl) substituents were as great within each Rhizobium biovar as between different Rhizobium biovars and, contrary to two recent reports (Philip-Hollingsworth, S., Hollingsworth, R. I., and Dazzo, F. B. (1989) J. Biol. Chem. 264, 1461-1466; Philip-Hollingsworth, S., Hollingsworth, R. I., Dazzo, F. B., Djordjevic, M. A., and Rolfe, B. G. (1989) J. Biol. Chem. 264, 5710-5714), the O-acylation patterns were not correlated with the host specificity of the bacteria.  相似文献   

16.
Bradyrhizobium japonicum USDA 110 synthesized both extracellular and periplasmic polysaccharides when grown on mannitol minimal medium. The extracellular polysaccharides were separated into a high-molecular-weight acidic capsular extracellular polysaccharide fraction (90% of total hexose) and three lower-molecular-weight glucan fractions by liquid chromatography. Periplasmic glucans, extracted from washed cells with 1% trichloroacetic acid, gave a similar pattern on liquid chromatography. Linkage analysis of the major periplasmic glucan fractions demonstrated mainly 6-linked glucose (63 to 68%), along with some 3,6- (8 to 18%), 3- (9 to 11%), and terminal (7 to 8%) linkages. The glucose residues were beta-linked as shown by H-nuclear magnetic resonance analysis. Glucan synthesis by B. japonicum cells grown on mannitol medium with 0 to 350 mM fructose as osmolyte was measured. Fructose at 150 mM or higher inhibited synthesis of periplasmic and extracellular 3- and 6-linked glucans but had no effect on the synthesis of capsular acidic extracellular polysaccharides.  相似文献   

17.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
《Carbohydrate research》1986,146(2):307-326
Octasaccharide repeating-units have been isolated from the acidic polysaccharides secreted by Rhizobium trifolii strain NA30, R. trifolii strain LPR5, R. leguminosarum strain LPR1, and R. phaseoli strain LPR49. (R. trifolii is the symbiont of clover, R. leguminosarum, of peas, and R. phaseoli, of beans). The repeating units were formed by treating the polysaccharides with an enzyme produced by a bacteriophage. The glycosyl sequence and the structures and locations of the non-glycosyl substituents were shown to be identical for repeating units derived from all of these polysaccharides, except for that derived from the polysaccharide produced by R. trifolii NA30. Therefore, the discernible structural features of the acidic polysaccharides secreted by Rhizobium species cannot be the determinant of host specificity. In support of this conclusion is the observation that R. trifolii LPR5045, produced by curing R. trifolii LPR5 of its Sym plasmid (the Sym plasmid is required for symbiosis and host specificity), secreted a polysaccharide having the same structure (including identities and locations of nonglycosyl substituents) as that of the polysaccharide secreted by its plasmid-containing parent. Thus, the structural genes that encode for synthesis of the acidic polysaccharide secreted by R. trifolii LPR5045 are not located on the Sym plasmid, and neither are the genes that encode for synthesis and attachment of non-glycosyl substituents of the polysaccharide. The possibility remains that a quantitatively minor component of the acidic polysaccharide could be a host-specific determinant.  相似文献   

20.
Two O-glycosidically linked acidic polysaccharides, AP I and AP II, were released, respectively, from glycoproteins GP I and GP II of Fusarium sp. M7-1 by alkaline borohydride treatment and purified by gel filtration chromatography. They were found to be apparently homogeneous on gel filtration chromatography and analytical ultracentrifugation. Their molecular weights were estimated to be 8.2 x 10(4) and 3.1 x 10(4), respectively. The various oligosaccharide fragments obtained from AP I and AP II by acetolysis and partial acid hydrolysis were purified by gel filtration chromatography and HPLC. Their primary structures were resolved mainly by NMR spectrometry in combination with methylation mass spectrometry. Analyses of the acetolysis and partial acid hydrolysis products and the 1H-NMR spectrum of AP I and AP II showed that they are analogues. Thus, we propose that the main parts of the acidic polysaccharides have the following structures. [formula: see text] *X, unidentified oligosaccharide chains. The numbers on the left and the numbers in parentheses outside the brackets indicate the approximate number of side chains of AP I and AP II, respectively, the saccharide sequences of which are not specified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号