首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of pre-sowing seed treatment with polyamines (2.5 mM putrescine, 5.0 mM spermidine and 2.5 mM spermine) on growth, photosynthetic capacity, and ion accumulation in two spring wheat (Triticum aestivum L.) cultivars MH-97 (intolerant) and Inqlab-91 (tolerant) was examined. The primed seeds of each treatment and non-primed seeds were sown in a field containing 15 dS m−1 NaCl. Although all three polyamines were effective in improving shoot growth and grain yield in both cultivars under saline conditions, the effect of spermine was very pronounced particularly in improving grain yield. Different priming agents did not affect the net CO2 assimilation rate and transpiration rate of either cultivar. However, pre-treatment with spermidine increased stomatal conductance (gs) in the tolerant cultivar, whereas with spermine stomatal conductance decreased in the intolerant cultivar under salt stress. Priming agents had different effects on the accumulation of different ions in wheat plant tissues. When spermidine and distilled water were used as priming agents, they were effective in reducing shoot [Na+] in the tolerant and intolerant cultivars, respectively under saline conditions. Although all priming agents caused an increase in shoot [K+], distilled water was more effective in improving shoot [K+] in both cultivars under salt stress. Pre-treatment with spermidine was very effective in reducing shoot [Cl] under saline conditions particularly in the tolerant cultivar. However, the pattern of accumulation of different ions in roots due to different seed priming treatments was not consistent in either cultivar except that root Na+ decreased due to priming with spermine and spermidine in the intolerant and tolerant cultivars under saline conditions. In conclusion, although all three priming agents, spermine, spermidine and putrescine, were effective in alleviating the adverse effect of salt stress on wheat plants, their effects on altering the concentration of different ions and growth were different in the two cultivars differing in salt tolerance.  相似文献   

2.
Putrescine, spermidine, spermine and cadaverine have been identified and quantified in rice phloem sap and shoot extracts by HPLC. It is suggested that diamines, putrescine and cadaverine, easily migrate into the phloem, while movement of a triamine, spermidine, and a tetramine, spermine, tend to be restricted. Spermine especially seems to be the most immobile among polyamines. Thus it is indicated that movement of polyamines into phloem is decreased with increasing number of amino groups. Indole-3-acetic acid and abscisic acid in rice phloem sap were also analyzed by HPLC and it is suggested that indole-3-acetic acid is transported freely into phloem, while abscisic acid is much more actively exuded into phloem.  相似文献   

3.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m−1) and were sprayed with 0.00, 0.05 and 0.10 mg l−1 24-epibrassinolide (EBL). Salt stress considerably decreased plant productivity, membrane stability index, photochemical reactions of photosynthesis, the content of relative water, chlorophyll and nitrate, the activity of nitrate reductase and carbonic anhydrase and the level of carbohydrate and protein. The reduction was more pronounced in Giza 168. The follow-up treatment with 0.1 mg l−1 EBL detoxified the stress generated by salinity and significantly improved the above parameters, especially in Sids 1. Glycinebetaine concentration was sharply elevated by salt stress and/or EBL treatments, particularly in Sids 1. Salinity increased putrescine level in Sids 1 and Giza 168, however, spermidine and spermine increased in Sids 1 and decreased in Giza 168. Exogenously applied EBL had a varying effect on polyamines pool under saline condition, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. EBL prevented diamine oxidase and polyamine oxidase inhibition, indicating a positive correlation between salt tolerance and polyamines accumulation. Obviously, EBL can be a practical strategy toward generating high-yielding plants under saline condition by enhancing carbon and nitrogen metabolisms. This is the first report dealing with EBL effect on polyamines pool under salt stress.  相似文献   

4.
The profile of free and conjugated polyamines putrescine, spermidine, and spermine was studied at the onset of sprouting and during various stages of vegetative growth in saffron (Crocus sativus L.) corms. Polyamines were extracted from the shoot meristems and estimated by high performance liquid chromatography. Free putrescine was not detected at the onset of sprouting, whereas free spermidine and spermine levels increased rapidly on sprouting and decreased during further stages of corm development. The levels of conjugated polyamines were several times higher than the free forms indicating their possible role in the developmental processes. A comparison of polyamine levels of vegetative and floral corms showed higher titers of free polyamines in vegetative and conjugated polyamines in floral corms.  相似文献   

5.
1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.  相似文献   

6.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m?1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization, plant productivity and N, P, K+, Fe, Zn and Cu concentrations, while it increased Na+ level, particularly in Giza 168. Mycorrhizal colonization significantly enhanced plant productivity and N, P, K+, Fe, Zn and Cu acquisition, while it diminished Na+ uptake, especially in Sids 1. Salinity increased putrescine level in Giza 168, however, values of spermidine and spermine increased in Sids 1 and decreased in Giza 168. Mycorrhization changed the polyamine balance under saline conditions, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. Moreover, mycorrhizal inoculation significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed wheat plants. Modulation of nutrient acquisition and polyamine pool can be one of the mechanisms used by AMF to improve wheat adaptation to saline soils. This is the first report dealing with mycorrhization effect on diamine oxidase and polyamine oxidase activities under salt stress.  相似文献   

7.
Spermine accumulation under salt stress   总被引:11,自引:0,他引:11  
Polyamines have long been recognized to be linked to stress situations, and it is generally accepted that they have protective characteristics. However, little is known about their physiological relevance in plants subjected to long-term salt stress. In order to precise their importance, two rice (Oryza sativa) cultivars differing in their salt tolerance were salinized for 7, 14 and 21 days. The activities of some of the enzymes involved in polyamine metabolism, free polyamines and proline contents were evaluated. Arginine decarboxylase and S-adenosyl-L-methionine decarboxylase activities were reduced in both cultivars as a consequence of salt treatment. However, spermidine synthase activity was reduced in the salt tolerant cultivar (var Giza) but not in the salt sensitive (var El Paso), while no polyamine oxidase activity was detected. During the salinization period, putrescine and spermidine levels decreased in both cultivars, although less dramatically in Giza. Simultaneously, spermine accumulations occur in both varieties, while proline accumulation was major in the sensitive one. However, spermine accumulation induced by treatment with spermidine synthase inhibitor cyclohexylamine, determined no reduction in leaf injury associated with salt stress in both cultivars. The data presented suggest that spermine accumulation is not a salt tolerance trait.  相似文献   

8.
The biosynthesis of polyamines from the diamine putrescine is not fully understood in higher plants. A putrescine aminopropyltransferase (PAPT) enzyme activity was characterized in alfalfa (Medicago sativa L.). This enzyme activity was highly specific for putrescine as the initial substrate and did not recognize another common diamine, 1,3-diaminopropane, or higher-molecular-weight polyamines such as spermidine and spermine as alternative initial substrates. The enzyme activity was inhibited by a general inhibitor of aminopropyltransferases, 5[prime]-methylthioadenosine, and by a specific inhibitor of PAPTs, cyclohexylammonium sulfate. The initial substrate specificity and inhibition characteristics of the enzyme activity suggested that it is a classical example of a PAPT. However, this enzyme activity yielded multiple polyamine products, which is uncharacteristic of PAPTs. The major reaction product of PAPT activity in alfalfa was spermidine. The next most abundant products of the enzyme reaction using putrescine as the initial substrate included the tetramines spermine and thermospermine. These two tetramines were distinguished by thin-layer chromatography to be distinct reaction products exhibiting differential rates of formation. In addition, the uncommon polyamines homocaldopentamine and homocaldohexamine were tentatively identified as minor enzymatic reaction products but only in extracts prepared from osmotic stresstolerant alfalfa cultivars. PAPT activity from alfalfa was highest in meristematic shoot tip and floral bud tissues and was not detected in older, nonmeristematic tissues. Product inhibition of the enzyme activity was observed after spermidine was added into the in vitro assay for alfalfa PAPT activity. A biosynthetic pathway is proposed that accounts for the characteristics of this PAPT activity and accommodates a novel scheme by which certain uncommon polyamines are produced in plants.  相似文献   

9.
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 microM increase F(V) as efficiently as 100 microM of spermidine or 1000 microM of putrescine or 1000 microM of Mg(2+). It is also demonstrated that the increase in F(V) derives mainly from the contribution of PSIIalpha centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

10.
Polyamines and environmental challenges: recent development   总被引:73,自引:0,他引:73  
In this review, we will try to summarize some recent data concerning the changes in polyamine metabolism (biosynthesis, catabolism and regulation) in higher plants subjected to a wide array of environmental stress conditions and to describe and discuss some of the new advances concerning the different proposed mechanisms of polyamine action implicated in plant response to environmental challenges. All the data support the view that putrescine and derived polyamines (spermidine, spermine, long-chained polyamides) may have several functions during environmental challenges. In several systems (except during hypoxia, and chilling tolerance of wheat and rice) an induction of polyamines (spermidine, spermine) not putrescine accumulation, may confer a stress tolerance. In several cases stress tolerance is associated with the production of conjugated and bound polyamines and stimulation of polyamine oxidation. In several environmental challenges (osmotic-stress, salinity, hypoxia, environmental pollutants) recent results indicate that both arginine decarboxylase and ornithine decarboxylase are required for the synthesis of putrescine and polyamines (spermidine and spermine). Under osmotic and salt-stresses a production of cadaverine is observed in plants. A new study demonstrates that under salt-stress putrescine catabolism (via diamine oxidase) can contribute to proline (a compatible osmolyte) accumulation.  相似文献   

11.
The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration.  相似文献   

12.
The role of endogenous polyamines in the control of NaCl-inhibited growth of rice seedlings was investigated. Putrescine, spermidine and spermine were all present in shoots and roots of rice seedlings. NaCl treatment did not affect spermine levels in shoots and roots. Spermidine levels in shoots and roots were increased with increasing concentrations of applied NaCl. NaCl at a concentration of 50 mM, which caused only slight growth inhibition, drastically lowered the level of putrescine in shoots and roots. Addition of precursors of putrescine biosynthesis (L-arginine and L-ornithine) resulted in an increase in putrescine levels in NaCl-treated shoots and roots, but did not allow recovery of the growth inhibition of rice seedlings induced by NaCl. Pretreatment of rice seeds with putrescine caused an increase in putrescine level in shoots, but could not alleviate the inhibition effect of NaCl on seedling growth. The current results suggest that endogenous polyamines may not play a significant role in the control of NaCl-inhibited growth of rice seedlings.Abbreviations PUT putrescine - SPD spermidine - SPM spermine  相似文献   

13.
This is the first report correlating levels of polyamines and its fractions with differentiation in Dictyostelium discoideum. Temporal changes in endogenous levels of free, conjugated and bound putrescine, spermidine and spermine were analysed at critical stages of morphogenesis in this organism. No spermine was found at any given stage and putrescine was the most abundant polyamine. There was a sharp increase in the levels of both free (and total) and conjugated forms of putrescine and spermidine at the slug stage as compared to the growth phase. The levels of putrescine and spermidine were found to be higher in isolated prespore cells as compared to the prestalk cells. Remarkably, the levels of polyamine decreased at the early culminant stage. Data suggest that a moderate level of polyamines is needed for growth but it is important to have high levels of polyamines at the time of differentiation.  相似文献   

14.
The distribution of the diamines cadaverine and putrescine and of the polyamines spermidine and spermine has been determined in pea seedlings at variou  相似文献   

15.
The Escherichia coli mutant speE deficient in the gene encoding for spermidine synthase has no absolute requirement for spermidine but shows a retarded growth rate. This growth retardation could be unspecifically restored to the respective wild type level by exogenously supplied polyamines such as spermidine, spermine and homospermidine as well as the diamines putrescine and cadaverine. In comparison to the respective wild type, the mutant shows a two-fold increased level of endogenous putrescine but displays a reduced ability to accumulate the diamines putrescine and cadaverine. The ability to accumulate polyamines is not affected. The deleted spermidine synthase gene of the mutant was substituted by heterologous expression of the hss gene from Rhodopseudomonas viridis encoding homospermidine synthase.  相似文献   

16.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

17.
Polyamines and Pectins (I. Ion Exchange and Selectivity)   总被引:2,自引:0,他引:2       下载免费PDF全文
The ion-binding and -exchange properties of putrescine, spermidine, and spermine on purified walls of carrot (Daucus carota L.) cell suspensions were investigated by producing ion-exchange isotherms and comparing them with the behavior of Na+, Mg2+, and Ca2+. The cation exchange capacity of the carrot cell walls was 0.8 equivalent kg-1 dry matter, and the ionic selectivity sequence of the walls for polyamines followed the sequence spermine4+ > spermidine3+ [almost equal to] Ca2+ > putrescine2+. The polyamines were subjected to only electroselectivity and probably did not induce any favorable supramolecular conformation of pectin like the one induced by Ca2+. Triangular ion exchanges were also performed with three diamines: ethanediamine, butanediamine, and octanediamine. The shorter the diamine, the higher the total adsorption and selectivity of the exchange. The lower selectivity of the cell wall for putrescine was partly attributed to its inability to access and displace Ca2+ from higher affinity sites within dimerized pectic sequences. The polyamine adsorption and exchange on pectic sequences could result in pectic signal modulation in pathogenesis and in differentiation.  相似文献   

18.
The inhibitory effect of the polyamines, spermidine and spermine, on the proliferation of human fibroblasts in culture was found to be reversed by the addition of aminoguanidine (AM), a specific and highly effective inhibitor of diamine oxidase (DAO) present in fetal calf serum (FCS). Aminoguanidine itself in concentration as high as 10(-3) M exhibited no effect upon cell proliferation nor did putrescine at similar concentrations. However, at higher concentrations of putrescine, cell proliferation was inhibited and this inhibition was unaffected by the addition of mM concentrations of AM. These studies support earlier hypotheses on the mechanisms of the toxic effects of polyamines on cell proliferation and establish further that the diamine oxidase-catalyzed metabolism of spermine and spermidine is necessary for their toxic effects in cell culture.  相似文献   

19.
The leaves of four reed ecotypes (Phragmites communis Trinius) growing in the desert regions of northwest China were investigated for levels of polyamines and activity of arginine decarboxylase (ADC; EC 4.1.1.19) during the growing season of 5 months. The polyamines in the leaves of all reed ecotypes consisted of putrescine, spermidine and spermine. The polyamine levels of the leaves were lower in the swamp reed than in the terrestrial reed ecotypes. Leaf polyamine levels decreased in all ecotypes over the course of the season. Compared to the swamp reed, the terrestrial reed ecotypes maintained higher ADC activity and a predominance of spermine, resulting in a lower ratio of putrescine to spermidine and spermine. It seems that the adaptation of reed plants to drought and saline habitats may be correlated with putrescine synthesis via the ADC pathway, and with a successful conversion of putrescine to spermidine and spermine.  相似文献   

20.
The polyamines spermine and spermidine and the diamine putrescine inhibit lipid peroxidation in phospholipid liposome suspensions and rat liver homogenates. Using the chemiluminescence technique the antioxidant activity of polyamines was found to be due to reactions with the free radical intermediates of lipid peroxidation and/or superoxide radicals. Also, the antioxidant action of polyamines correlated with the amount of their amino groups: the antioxidant activity increases from putrescine to spermine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号