首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A procedure is described for the purification of glutamine synthetase from the nitrogen-fixing organism Azotobacter vinelandii. Electron micrographs of the enzyme reveal a dodecameric arrangement of its subunits in two superimposed hexagonal rings similar to the glutamine synthetase of Escherichia coli. Disc eleetrophoresis in the presence of sodium dodecyl sulfate and sedimentation studies show a subunit molecular weight of 56,500 and a sedimentation coefficient (s20,w) of the native enzyme of 20.0 S. Like the E. coli enzyme, the glutamine synthetase of A. vinelandii is regulated by adenylylation/deadenylylation. This finding was derived from (a) studies on the effect of snake venom phosphodiesterase treatment on the catalytic and spectral properties of enzyme isolated from cells grown on a nitrogen-rich medium, (b) the identification of the AMP released by the phosphodiesterase by thin-layer chromatography, (c) the selective precipitation of adenylylated enzyme with antibodies directed against adenylylated bovine serum albumin, and (d) the in vitro incorporation of radioactivity from [14C]ATP into deadenylylated enzyme in the presence of either crude extract from A. vinelandii or partially purified adenylyl transferase from E. coli. The state of adenylylation appears to have a similar influence on the catalytic properties of A. vinelandii glutamine synthetase as on those of the E. coli enzyme, with the exception that the deadenylylated form of the A. vinelandii glutamine synthetase is almost inactive in the Mn-dependent transferase reaction.  相似文献   

2.
The activity of glutamine synthetase (GS) fromStreptomyces aureofaciens was regulated by the availability of the nitrogen source. Rich nitrogen sources repressed GS synthesis and increased GS adenylylation. The enzyme was purified 270-fold to virtual homogeneity with 37% recovery. The molar mass of the native enzyme and its subunits was determined to be 620 and 55 kDa, respectively, indicating that GS is composed of 12 identical subunits. The enzyme has a hexagonal-bilayered structure as observed by electron microscopy. The isoelectric point of the purified GS was at pH 4.2. The enzyme was stable for 1 h at 50°C but lost activity rapidly when incubated at 65 and 70°C. Mg2+ supported relative synthetic activity of 100 and 72%, respectively, with the corresponding pH optima of 7.3 and 7.0. Mn2+ ions activated transferase activity at a pH optimum of 7.0. The temperature optimum for all GS activities was 50°C. Intermediates of the citric acid cycle exerted insignificant effects on the synthetic activities. There was no SH-group essential for the GS activity.  相似文献   

3.
In this paper we present the isolation and characterization of glutamine auxotrophs of Neurospora crassa and their revertants. The results show that although various enrichment procedures were used, we found only two types of auxotrophs. Genetic crosses performed between the different mutants showed that the mutations responsible for their phenotypes were highly linked and probably affected the same gene. The biochemical characterization of the glutamine synthetase polypeptides of the different mutants showed that both types contained the alpha monomer. However, in place of the normal beta monomer, each type had a new polypeptide differing from normal beta either in its molecular weight or in its isoelectric point. On the other hand, the revertants had only the alpha monomer and were capable of growing without glutamine. On the basis of these data, we propose that the lack of glutamine synthetase activity in the auxotrophs is due to the interaction of the altered beta with the alpha monomer, and as a consequence the alpha monomer of the revertants regains its activity because of the absence of the altered beta.  相似文献   

4.
When continuous cultures of Azotobacter vinelandii were supplied with ammonium or nitrate in amounts, which just repressed nitrogenase synthesis completely, both the intracellular glutamine level and the degree of adenylylation of the glutamine synthetase (GS) increased only slightly (from 0.45–0.50 mM and from 2 to 3 respectively), while the total GS level remained unaffected. Higher amounts of ammonium additionally inhibited the nitrogenase activity, caused a strong rise in the intracellular glutamine concentration and adenylylation of the GS, but caused no change in the ATP/ADP ratio. These results are considered as evidence that in A. vinelandii the regulation of nitrogenase synthesis is not linked to the adenylylation state of the GS and to the intracellular glutamine level, and that the inhibition of the nitrogenase activity as a consequence of a high extracellular ammonium level is not mediated via a change in the energy charge.Abbreviations GS glutamine synthetase - GS-S(Mg) Mg2+ dependent synthetic activity of GS - GS-T(Mn) Mn2+ dependent transferase activity of GS  相似文献   

5.
6.
Summary The fine structure of Azotobacter vinelandii was examined using a micro-colony embedding method. With this technique the difficulty of obtaining well preserved bacterial flagella in thin sections of material prepared in the usual fashion for electron microscopy was overcome, as the cells and their appendages were held in their natural position. The insertion of flagella and their substructure as revealed by thin sectioning and negative staining was studied. The results obtained on the fine structure of the flagellum is discussed and a possible interpretation of the arrangement of sub-units is presented in a model. Some new inclusions and membranous structures in the cytoplasm of the cells are described. These structures do not appear to be involved in tellurite reduction. These is no evidence to indicate that the flagellar insertion sites showed any activity of tellurite reduction. Thus in Azotobacter, other systems seem to be responsible for the ability of the cells to reduce tellurite.  相似文献   

7.
The probable effect of increasing levels of ammonium nitrogen on the growth, efficiency of nitrogen fixation, and main cellular constituents of Azotobacter vinelandii was studied under shaking and static culture conditions. The presence of NH4+-N up to 50 mgl-1 level has no harmful effect on the multiplication as well as the yield efficiency ratio of the tested organism. A. vinelandii was able to fix dinitrogen in the presence of NH4+-N when both nitrogen sources were available in the culturing medium. The efficiency of nitrogen fixation was affected by the initial presence of NH4+-N in the medium, it was quite low at the highest level. The crude protein efficiency ratio was correlated inversely with the initial NH4+-N concentration, whereas the total carbohydrate efficiency ratio as well as the total lipid efficiency ratio were positively correlated with the NH4+-N concentration. The presence of NH4+-N in the culturing medium has no essential influence on the qualitative composition of the amino acids in the Azotobacter cells.  相似文献   

8.
Glutamine synthetase I fromRhizobium meliloti was found to be inhibited by adenosine 5-monophosphate, alanine, glycine, carbamyl phosphate, cytidine 5-triphosphate, tryptophan, histidine, and glucosamine-6-phosphate. Each inhibitor was independent in its action and the effect was cumulative when more than one inhibitor was added.  相似文献   

9.
10.
11.
The relationships of five feedback inhibitors for the Bacillus licheniformis glutamine synthetase were investigated. The inhibitors were distinguishable by differences in their competitive relationship for the substrates of the enzyme. Mixtures of l-glutamine and adenosine-5'-monophosphate (AMP) or histidine and AMP caused synergistic inhibition of glutamine synthesis. Histidine, alanine, and glycine acted antagonistically toward the l-glutamine inhibition. Alanine acted antagonistically toward the glycine and histidine inhibitions. Independence of inhibitory action was observed with the other pairs of effectors. Possible mechanisms by which the inhibitors may interact to control glutamine synthesis are discussed. The low rate of catalysis of the glutamyl transfer reaction by the B. licheniformis glutamine synthetase can be attributed to the fact that l-glutamine serves both as a substrate and an inhibitor for the enzyme. Effectors which act antagonistically toward the l-glutamine inhibition stimulated glutamotransferase activity. The stimulation was not observed when d-glutamine was used as substrate for the glutamyl transfer reaction.  相似文献   

12.
The glutamine synthetase of Bacillus licheniformis has been obtained at about 15% purity. Sucrose gradient centrifugation gave a molecular weight value of approximately 612,000. Both l- and d-glutamate can be utilized as substrates in the biosynthetic reaction, although the l isomer was five times more active. The requirement for adenosine triphosphate (ATP) can be partially replaced by guanosine or inosine triphosphates, but not by cytidine or uridine triphosphates. The Mn(++) was required for activity, and the requirement cannot be satisfied with Mg(++). Maximal activity of the biosynthetic reaction was observed when ATP and Mn(++) were present in equimolar amounts. An excess of either reactant gave less activity. However, other purine and pyrimidine nucleotides, when added in combination with ATP, can partially substitute for ATP in attaining the equimolar ratio of nucleotide to Mn(++). A complex of ATP and Mn(++) is the preferred form of substrate. The B. licheniformis enzyme catalyzes the glutamyl transfer reaction but at a much slower rate than the Escherichia coli glutamine synthetase. Either adenosine diphosphate (ADP) or ATP can activate the glutamotransferase, although ADP is more active.  相似文献   

13.
Methylammonium is a substrate for the ammonium transport system of Azotobacter vinelandii. During cellular uptake methylammonium is rapidly converted to a less polar metabolite (E. M. Barnes, Jr., and P. Zimniak, J. Bacteriol. 146:512-516, 1981). This metabolite has been isolated from A. vinelandii and identified as gamma-glutamylmethylamide by mass spectroscopy, 1H nuclear magnetic resonance spectroscopy, and cochromatography with the authentic compound. Escherichia coli also accumulated gamma-glutamylmethylamide during methylammonium uptake. The biosynthesis of gamma-glutamylmethylamide in vitro required methylammonium, ATP, L-glutamate, and a soluble cell extract from A. vinelandii. The enzyme responsible for gamma-glutamylmethylamide synthesis was glutamine synthetase. In a crude extract, L-methionine-DL-sulfoximine was equipotent in inhibiting the activities for gamma-glutamyltransferase and for the synthesis of glutamine and gamma-glutamylmethylamide. Likewise, an antiserum against the glutamine synthetase of E. coli precipitated the transferase and both synthetic activities at similar titers. During repression by growth of cells on ammonium medium, the synthesis of glutamine and gamma-glutamylmethylamide in vitro was also inhibited coordinately. A partially purified preparation of glutamine synthetase from A. vinelandii utilized methylammonium as substrate (Km = 78 mM, Vmax = 0.30 mumol/min per mg), although less efficiently than ammonium (Km = 0.089 mM, Vmax = 1.1 mumol/min per mg). The kinetic properties of glutamine synthetase with methylammonium as substrate as well as the insensitivity of this activity to inhibition by T1+ were strikingly different from methylammonium translocation. Thus, methylammonium (ammonium) translocation and intracellular trapping as glutamylamides are experimentally distinguishable processes.  相似文献   

14.
15.
16.
Regulation of glutamine synthetase in Streptomyces coelicolor.   总被引:3,自引:10,他引:3       下载免费PDF全文
  相似文献   

17.
18.
Glutamine synthetase from a Gram-positive acid-fast bacterium, Mycobacterium smegmatis, was purified to homogeneity from cells grown with glycerol-bouillon medium. Electron micrographs of the enzyme revealed a dodecameric arrangement of its subunits in two superimposed hexagonal rings, similar to the structure of glutamine synthetase of Escherichia coli. Disc electrophoresis in the presence of sodium dodecyl sulfate indicated a subunit molecular weight of 56,000. The sedimentation coefficient of the native enzyme was estimated to be 19.4S by ultracentrifugation in a sucrose gradient. Like the E. coli enzyme, the glutamine synthetase from M. smegmatis is regulated by adenylylation/deadenylylation. This conclusion was based on studies of the effect of snake venom phosphodiesterase treatment on the catalytic and spectral properties of the isolated enzyme. The AMP released from the enzyme by the phosphodiesterase was identified by thin-layer chromatography. Despite the structural similarity of both enzymes, striking differences were found between the catalytic properties of M. smegmatis and E. coli glutamine synthetases. The divalent cation specificity of the M. smegmatis enzyme was not altered by adenylylation of the enzyme, and deadenylylation of the enzyme caused a significant increase in the specific activities for both biosynthetic and transfer reactions with either Mg2+ or Mn2+.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号