首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional serotyping has traditionally been used to subtype Listeria monocytogenes, but has several limitations, including low discriminatory power and poor reproducibility. Molecular serotyping methods have been developed for L. monocytogenes, but generally show limited discriminatory power and high misclassification rates. We selected 157 Listeria isolates to evaluate a combination of a previously described multiplex PCR assay and sigB allelic typing as an alternative molecular serotyping and subtyping strategy for L. monocytogenes. While the multiplex PCR assay differentiated five L. monocytogenes subtypes (Simpson's Index of Discrimination [SID]=0.78), including classification of the most common disease-associated serotypes (1/2a, 1/2b, 1/2c, and lineage I 4b) into four distinct groups, it misclassified 3.8% of the isolates studied here. sigB allelic typing differentiated 29 subtypes (SID=0.87) and also allowed identification of lineage III L. monocytogenes, which could not be differentiated from the other Listeria spp. by the multiplex PCR assay. sigB allelic typing failed to differentiate serotype 1/2c and 1/2a isolates and one sigB allelic type included serotype 4b and 1/2b isolates. A molecular serotyping approach that combines multiplex PCR and sigB sequence data showed increased discriminatory power (SID=0.91) over either method alone as well as conventional serotyping (SID=0.87) and classifies the four major serotypes (i.e., 1/2a, 1/2b, 1/2c, and 4b) into unique subgroups with a lower misclassification rate as compared to the multiplex PCR assay. This combined approach also differentiates lineage I serotype 4b isolates from the genetically distinct serotype 4b isolates classified into lineage III.  相似文献   

2.
Droppings from 112 urban rooks ( Corvus frugilegus ) were cultured for the presence of Listeria sp. Overall, 46% of rooks sampled harboured one or more Listeria species. Of all birds examined, 33%, 24% and 8%, respectively, were infected with Listeria monocytogenes, Listeria innocua and Listeria seeligeri. Differentiation of L. monocytogenes and L. seeligeri carried out by several phenotypic typing methods proved the diversity of strains and the major role of rooks which widely contribute to spreading this bacteria in our environment. The results also suggest that the ability to recover specific Listeria strains from the same sample is at least partially dependent on the methodology. These findings reinforce the need for strain-specific typing of multiple L. monocytogenes isolates from the same sample.  相似文献   

3.
The persistence of Listeria monocytogenes in food-associated environments represents a key factor in transmission of this pathogen. To identify persistent and transient strains associated with production of fermented meat sausages in northern Portugal, 1,723 L. monocytogenes isolates from raw material and finished products from 11 processors were initially characterized by random amplification of polymorphic DNA (RAPD), PCR-based molecular serotyping, and epidemic clone characterization, as well as cadmium, arsenic, and tetracycline resistance typing. Pulsed-field gel electrophoresis (PFGE) typing of 240 representative isolates provided evidence for persistence of L. monocytogenes for periods of time ranging from 10 to 32 months for all seven processors for which isolates from different production dates were available. Among 50 L. monocytogenes isolates that included one representative for each PFGE pattern obtained from a given sample, 12 isolates showed reduced invasion efficiency in Caco-2 cells, including 8 isolates with premature stop codons in inlA. Among 41 isolates representing sporadic and persistent PFGE types, 22 isolates represented lysogens. Neither strains with reduced invasion nor lysogens were overrepresented among persistent isolates. While the susceptibility of isolates to lysogenic phages also did not correlate with persistence, it appeared to be associated with molecular serotype. Our data show the following. (i) RAPD may not be suitable for analysis of large sets of L. monocytogenes isolates. (ii) While a large diversity of L. monocytogenes subtypes is found in Portuguese fermented meat sausages, persistence of L. monocytogenes in this food chain is common. (iii) Persistent L. monocytogenes strains are diverse and do not appear to be characterized by unique genetic or phenotypic characteristics.  相似文献   

4.
Methods used for the detection and subtyping of Listeria monocytogenes   总被引:1,自引:0,他引:1  
Listeria monocytogenes is an important foodborne pathogen responsible for non-invasive and invasive diseases in the elderly, pregnant women, neonates and immunocompromised populations. This bacterium has many similarities with other non-pathogenic Listeria species which makes its detection from food and environmental samples challenging. Subtyping of L. monocytogenes strains can prove to be crucial in epidemiological investigations, source tracking contamination from food processing plants and determining evolutionary relationships between different strains. In recent years there has been a shift towards the use of molecular subtyping. This has led to the development of new subtyping techniques such as multi-locus variable number tandem repeat analysis (MLVA) and multi-locus sequence based typing (MLST). This review focuses on the available methods for Listeria detection including immuno-based techniques and the more recently developed molecular methods and analytical techniques such as matrix-assisted laser desorption/ionisation time-of-flight based mass spectrometry (MALDI-TOF MS). It also includes a comparison and critical analysis of the available phenotypic and genotypic subtyping techniques that have been investigated for L. monocytogenes.  相似文献   

5.
The minimal antibiotic options for carbapenemase‐producing Gram‐negative bacteria necessitate their rapid detection. A literature review of a variety of phenotypic and genotypic methods is presented. Advances in culture methods and screening media are still subject to long incubation hours. Biochemical methods have shorter turnaround times and higher sensitivities and specificities, but cannot differentiate between various types and variants. Spectrophotometric methods are cheap and efficient, but are uncommon in many clinical settings, while the MALDI‐TOF MS is promising for species identification, typing and resistance gene determination. Although next generation sequencing (NGS) technologies provide a better platform to detect, type and characterize carbapenem‐resistant bacteria, the different NGS platforms, the large computer memories and space needed to process and store genomic data and the nonuniformity in data analysis platforms are still a challenge. The sensitivities, specificities and turnaround times recorded in the various studies reviewed favours the use of the biochemical tests (Carba NP or Rapid Carb screen tests) for the detection of putative carbapenemase‐producing isolates. MALDI‐TOF MS and/or molecular methods like microarray, loop‐mediated isothermal amplification and real‐time multiplex PCR assays could be used for further characterization in a reference laboratory. NGS may be used for advanced epidemiological and molecular studies.  相似文献   

6.
DNA-based methods are increasingly important for bacterial typing. The high number of polymorphic sites present among closely related bacterial genomes is the basis for the presented method. The method identifies multilocus genomic polymorphisms in intergenic regions termed AILP (amplified intergenic locus polymorphism). For each locus, a pair of unique PCR primers was designed to amplify an intergenic sequence from one open reading frame (ORF) to the adjacent ORF. Presence, absence, and size variation of the amplification products were identified and used as genetic markers for rapidly differentiating among strains. Polymorphism was evaluated using 18 AILP sites among 28 strains of Listeria monocytogenes and 6 strains of Listeria spp. and 30 AILP markers among 27 strains of Escherichia coli. Up to four alleles per locus were identified among Listeria strains, and up to six were identified among E. coli strains. In both species, more than half of the AILP sites revealed intraspecies polymorphism. The AILP data were applied to phylogenetic analysis among Listeria and E. coli strains. A clear distinction between L. monocytogenes and Listeria spp. was demonstrated. In addition, the method separated L. monocytogenes into the three known lineages and discriminated the most common virulent serotypic group, 4b. In E. coli, AILP analysis separated the known groups as well as the virulent O157:H7 isolates. These findings for both Listeria and E. coli are in agreement with other phylogenetic studies using molecular markers. The AILP method was found to be rapid, simple, reproducible, and a low-cost method for initial bacterial typing that could serve as a basis for epidemiological investigation.  相似文献   

7.
A molecular method based on restriction fragment length polymorphism (RFLP) of PCR-amplified fragments of the 23S rRNA gene was designed to rapidly identify Listeria strains to the species level. Two fragments (S1, 460 bp, and S2, 890 bp) were amplified from boiled DNA. S2 was cut with the restriction enzymes XmnI or CfoI and, if needed, S1 was digested by either AluI or ClaI. This method was first optimized with six reference strains and then applied to 182 isolates collected from effluents of treatment plants. All isolates were also identified by the API Listeria kit, hemolysis, and phosphatidylinositol-specific phospholipase C production (PI-PLC) on ALOA medium. The PCR-RFLP method unambiguously identified 160 environmental strains, including 131 in concordance with the API system, and revealed that 22 isolates were mixed cultures of Listeria monocytogenes and Listeria innocua. Discrepant results were resolved by a multiplex PCR on the iap gene, which confirmed the PCR-RFLP data for 49 of the 51 discordances, including the 22 mixed cultures. Sequencing of the 16S rRNA gene for 12 selected strains and reconstruction of a phylogenetic tree validated the molecular methods, except for two unclassifiable strains. The 158 single identifiable isolates were 92 L. monocytogenes (including seven nonhemolytic and PI-PLC-negative strains), 61 L. innocua, 4 Listeria seeligeri, and 1 Listeria welshimeri strain. The PCR-RFLP method proposed here provides rapid, easy-to-use, inexpensive, and reliable identification of the six Listeria species. Moreover, it can detect mixtures of Listeria species and thus is particularly adapted to environmental and food microbiology.  相似文献   

8.
AIMS: Listeria monocytogenes strains isolated in the same geographical area from sewage sludge and from patients presenting with listeriosis were compared. METHODS AND RESULTS: All isolates were typed by serotyping, phage typing and SmaI/ApaI pulsed-field gel electrophoresis (PFGE). Among the sludge isolates (n=32), 22 subtypes could be distinguished by the combination of all typing methods. The human isolates (n=11) were distributed into 10 subtypes which clearly differed from those observed among sludge isolates, except for one cluster formed by two related human isolates which showed high similarity in PFGE patterns (SmaI: 92%; ApaI: 89.5%) with one sludge isolate. CONCLUSION: These results suggest the existence of an epidemiological link between sludge and human isolates, but they may also be reflecting the distribution of L. monocytogenes types within the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Sludge and human L. monocytogenes may be related but further epidemiological studies are necessary to elucidate this point.  相似文献   

9.
The computer analysis revealed hypervariable and highly conservative fractions in the genes of Gram-positive bacteria of the Listeria genus. As a result of analysis of gene iap coding protein p60, PCR based test systems for detection of 6 Listeria species, L. monocytogenes, L. seeligeri, L. ivanovii, L. innocua, L. grayi and L. welshimeri have been developed. Species-specific and conservative gene fragments coding Listeria pathogenicity factors, listeriolysin and cytolysin, were detected. The sets of primers for detection and gene typing of L. monocytogenes, L. seeligeri and L. ivanovii containing cytolysin have been made. The gene typing of Listeria may be carried out in one reaction with the use of multiplex PCR: amplified fragments for different Listeria species differ in the length of the amplified product. The developed sets of primers have a 95-100% degree of homology and may be recommended for the detection and gene typing of Listeria.  相似文献   

10.
Aims: The aim of this study was to analyse the intraspecific variability of Photobacterium damselae ssp. damselae strains isolated from different cultured marine fish species using molecular typing methods. Methods and Results: Twenty P. damselae ssp. damselae strains isolated from marine fish species were used in this study. Phenotypic characterization of the strains was carried out using standard microbiological methods. Genetic characterization was conducted using three PCR‐based methods [random amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus‐PCR (ERIC‐PCR) and repetitive extragenic palindromic‐PCR (REP‐PCR)]. Dice coefficient and the unweighted pair group method with average linkage were used for numerical analyses of banding patterns. At phenotypic level, the strains analysed showed seven different profiles, which could not be related to the host fish species, geographic area or outbreak of disease. Isolates were grouped into nine and eight clusters using the RAPD technique with primers 5 and 4, respectively. In both cases, the main cluster grouped 45% of strains. The techniques ERIC‐PCR and REP‐PCR were more discriminatory, both resulting in 14 different clusters, which grouped 15–20% of the isolates. Conclusions: In this study, the techniques tested are confirmed as good tools for molecular typing, because they allow discrimination between P. damselae ssp. damselae strains isolated within the same outbreak. In addition, ERIC‐PCR and REP‐PCR methods were more adequate for rapid typing of P. damselae ssp. damselae than RAPD, allowing the discrimination at strain level. Significance and Impact of the Study: The results, in agreement with previous studies, confirmed the high intraspecific variability among isolated P. damselae ssp. damselae strains at both phenotypic and genetic levels. This suggests the existence of different clonal lineages that coexist in the same geographic area, within a short period of time (2–3 years). The discrimination at strain level can be useful to study the traceability of infections.  相似文献   

11.
Physiological and molecular fingerprints of biotechnologically relevant rhizobacteria are necessary for registration, patenting, recognition and quality checking of the strains. To characterize the biological control agent, Bacillus subtilis B2g, the strain was compared with other plant-associated B. subtilis isolates. Phenotypic characterization included biochemical and nutritional properties, in vitro activity and analysis of potential antagonistic mechanisms towards several plant pathogenic fungi. According to the phenotypic characteristics, it was not possible to differentiate the biocontrol agent from the other strains, although the enzymatic fingerprint was unique. Genotypic diversity among the isolates was characterized by molecular fingerprinting methods using REP-PCR (repetitive extragenomic palindromic PCR), and macrorestriction of genomic DNA and electrophoretic separation of DNA fragments by pulsed-field gel electrophoresis (PFGE). A protocol for PFGE analysis using restriction enzyme SfiI for B. subtilis was developed. PFGE typing of B. subtilis B2g resulted in a unique fingerprint. Therefore, it was possible to differentiate B. subtilis B2g, the biocontrol agent of Phytovit, from other antifungal B. subtilis isolates.  相似文献   

12.
Aims: The aim of this study was to classify Edwardsiella strains isolated from China aquaculture based on biochemical and molecular methods. Methods and Results: In this study, biochemical characterization of 19 Edwardsiella tarda isolates and two Edwardsiella ictaluri isolates was performed with API 20E system. Other pathogenicity‐related phenotypes such as haemagglutination, haemolytic activities and lethality to fish were also examined in these strains. As it was difficult to categorize the subgroups of Edw. tarda according to their origins or phenotypic properties, three PCR‐based methods, i.e. PCR amplification of virulence genes, Enterobacterial repetitive intergenic consensus‐PCR and BOX‐PCR, were carried out to further resolve the relatedness of the Edw. tarda isolates. As a result, all Edw. tarda isolates could be generally grouped into pathogenic and nonpathogenic branches before being classified into strain‐specific or origin‐specific clades. Conclusions: Biochemical characterization was sensitive for interspecific typing, while PCR‐based approaches permitted a more accurate discrimination for intraspecific typing resulting in pathogenic and nonpathogenic clusters and further more delicate clades for Edwardsiella. Significance and Impact of the Study: PCR‐based genomic fingerprinting to study the relatedness and trace the pathogenicity of the Edwardsiella strains will be helpful in investigating the virulence factors of Edwardsiella and in the development of vaccines and diagnostics for edwardsiellosis.  相似文献   

13.
RAPD typing for distinguishing species and strains in the genus Listeria   总被引:6,自引:2,他引:4  
The randomly amplified polymorphic DNA (RAPD) technique was employed in the development of a typing protocol for Listeria isolates, particularly Listeria monocytogenes strains. A single strain of L. monocytogenes was used and 200 random decamer primers were screened for their discriminatory abilities by visualizing the amplification products electrophoretically. Three candidate primers displaying potentially useful banding patterns were selected and tested against 52 L. monocytogenes strains, encompassing 11 serotypes, and 12 other strains representing five other Listeria spp. Thirty-four banding profiles were obtained with one particular primer. RAPD analysis allowed differentiation between Listeria spp. and was found to further subdivide strains of the same serotype. Where only one primer was used strains from different serotypes were occasionally found to produce identical banding profiles. RAPD analysis, which in our hands proved to be reproducible, shows much promise as a molecular alternative to traditional L. monocytogenes typing protocols.  相似文献   

14.
Molecular typing of bacteria has been widely used in epidemiological studies but not as extensively for tracing the transmission of pathogenic bacteria in food plants. This study was conducted to examine the potential use of two molecular typing methods, random amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE), to trace Listeria monocytogenes contamination in a shrimp processing plant. Ribotyping and phase typing were also performed on a select number of strains. One hundred fifteen strains of L. monocytogenes collected in different areas of a shrimp processing plant were first serotyped and then subtyped by molecular typing. RAPD and PFGE showed great promise for typing L. monocytogenes isolates since distinguishable and reproducible DNA polymorphisms were obtained. When the composite profile from both (RAPD and PFGE) methods was generated, there was an increase in the discriminatory power to discern differences between strains of L. monocytogenes. The results indicated that environmental strains all fell into composite profile groupings unique to the environment, while strains from both water and utensils shared another composite profile group. L. monocytogenes fresh shrimp isolates belonging to one profile group were found in different areas of the processing line. This same profile group was also present in food handlers from the processing and packaging areas of the plant.  相似文献   

15.
Differentiation of the species within the genus Listeria is important for the food industry but only a few reliable methods are available so far. While a number of studies have used Fourier transform infrared (FTIR) spectroscopy to identify bacteria, the extraction of complex pattern information from the infrared spectra remains difficult. Here, we apply artificial neural network technology (ANN), which is an advanced multivariate data-processing method of pattern analysis, to identify Listeria infrared spectra at the species level. A hierarchical classification system based on ANN analysis for Listeria FTIR spectra was created, based on a comprehensive reference spectral database including 243 well-defined reference strains of Listeria monocytogenes, L. innocua, L. ivanovii, L. seeligeri, and L. welshimeri. In parallel, a univariate FTIR identification model was developed. To evaluate the potentials of these models, a set of 277 isolates of diverse geographical origins, but not included in the reference database, were assembled and used as an independent external validation for species discrimination. Univariate FTIR analysis allowed the correct identification of 85.2% of all strains and of 93% of the L. monocytogenes strains. ANN-based analysis enhanced differentiation success to 96% for all Listeria species, including a success rate of 99.2% for correct L. monocytogenes identification. The identity of the 277-strain test set was also determined with the standard phenotypical API Listeria system. This kit was able to identify 88% of the test isolates and 93% of L. monocytogenes strains. These results demonstrate the high reliability and strong potential of ANN-based FTIR spectrum analysis for identification of the five Listeria species under investigation. Starting from a pure culture, this technique allows the cost-efficient and rapid identification of Listeria species within 25 h and is suitable for use in a routine food microbiological laboratory.  相似文献   

16.
Identification of bona fide Listeria isolates into the six species of the genus normally requires only a few tests. Aberrant isolates do occur, but even then only one or two extra confirmatory tests are generally needed for identification to species level. We have discovered a hemolytic-positive, rhamnose and xylose fermentation-negative Listeria strain with surprising recalcitrance to identification to the species level due to contradictory results in standard confirmatory tests. The issue had to be resolved by using total DNA-DNA hybridization testing and then confirmed by further specific PCR-based tests including a Listeria microarray assay. The results show that this isolate is indeed a novel one. Its discovery provides the first fully documented instance of a hemolytic Listeria innocua strain. This species, by definition, is typically nonhemolytic. The L. innocua isolate contains all the members of the PrfA-regulated virulence gene cluster (Listeria pathogenicity island 1) of L. monocytogenes. It is avirulent in the mouse pathogenicity test. Avirulence is likely at least partly due to the absence of the L. monocytogenes-specific allele of iap, as well as the absence of inlA, inlB, inlC, and daaA. At least two of the virulence cluster genes, hly and plcA, which encode the L. monocytogenes hemolysin (listeriolysin O) and inositol-specific phospholipase C, respectively, are phenotypically expressed in this L. innocua strain. The detection by PCR assays of specific L. innocua genes (lin0198, lin0372, lin0419, lin0558, lin1068, lin1073, lin1074, lin2454, and lin2693) and noncoding intergenic regions (lin0454-lin0455 and nadA-lin2134) in the strain is consistent with its L. innocua DNA-DNA hybridization identity. Additional distinctly different hemolytic L. innocua strains were also studied.  相似文献   

17.
In this study, enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and randomly amplified polymorphic DNA PCR (RAPD-PCR) were optimized for characterization of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. In addition, a simple and rapid DNA extraction method was tested for use in both typing procedures. Both methods had satisfactory typeability and discriminatory power, but the fingerprints generated with ERIC-PCR were more reproducible and complex than those obtained with RAPD-PCR. The use of nondiluted boiled cell suspensions as DNA templates was found to be very useful in ERIC-PCR. Characterization of large numbers of Arcobacter isolates is therefore preferably performed by the ERIC-PCR procedure. Isolates for which almost identical ERIC fingerprints are generated may subsequently be characterized by RAPD-PCR, although adjustment and standardization of the amount of the DNA template are necessary. In the second part of this study, the genotypic diversity of arcobacters present on broiler carcasses was assessed by using both typing methods. A total of 228 cultures from 24 samples were examined after direct isolation and enrichment. The isolates were identified by using a multiplex PCR as A. butzleri (n = 182) and A. cryaerophilus (n = 46). A total of 131 types (91 A. butzleri types and 40 A. cryaerophilus types) were discerned without discordance between the two typing techniques. The analysis of the poultry isolates showed that poultry products may harbor not only more than one species but also multiple genotypes. All genotypes were confined to one poultry sample, and only three genotypes were found after simultaneous enrichment and direct isolation. These results demonstrate that different outcomes can be obtained in epidemiological studies depending on the isolation procedure used and the number of isolates characterized.  相似文献   

18.
AIM: To assess the extent of Listeria monocytogenes in causation of human spontaneous abortions by isolation methods and PCR analysis for the presence of virulence-associated genes. METHODS AND RESULTS: A total of 305 samples comprising blood, urine, placental bits, faecal and vaginal swabs were collected from 61 patients with spontaneous abortions. Listeria spp. were isolated from 10 samples collected from nine (14.8%) patients. Confirmation of these isolates was based on biochemical tests, haemolysis on blood agar, CAMP test, phosphatidylinositol-specific phospholipase C (PI-PLC) assay followed by in vivo pathogenicity tests and multiplex PCR to detect virulence-associated genes (prfA, plcA, hlyA, actA and iap). Three isolates were confirmed as L. monocytogenes. Of these, two isolates turned out to be pathogenic and found to posses all five genes. However, the remaining two haemolytic L. monocytogenes isolates lacking the plcA gene and activity in the PI-PLC assay were found to be nonpathogenic by in vivo tests. CONCLUSIONS: The occurrence of pathogenic L. monocytogenes in cases of spontaneous abortions was 3.3%. It seems that the plcA gene and its expression have an important role as essential virulence determinants in pathogenic Listeria spp. SIGNIFICANCE AND IMPACT OF THE STUDY: The recovery of pathogenic L. monocytogenes isolates from cases of spontaneous abortion indicates the significance of listeric infection in pregnant women.  相似文献   

19.
ABSTRACT: BACKGROUND: The genetic diversity of Mycoplasma agalactiae (MA) isolates collected in Spain from goats in an area endemic with contagious agalactia (CA) was assessed using a set of validated and new molecular typing methods. Validated methods included pulsed field gel electrophoresis (PFGE), variable number of tandem repeats (VNTR) typing, and Southern blot hybridization using a set of MA DNA probes, including those for typing the vpma genes repertoire. New approaches were based on PCR and targeted genomic regions that diverged between strains as defined by in silico genomic comparisons of sequenced MA genomes. RESULTS: Overall, the data showed that all typing tools yielded consistent results, with the VNTR analyses being the most rapid method to differentiate the MA isolates with a discriminatory ability comparable to that of PFGE and of a set of new PCR assays. All molecular typing approaches indicated that the Spanish isolates from the endemic area in Murcia were very diverse, with different clonal isolates probably restricted to separate, but geographically close, local areas. CONCLUSIONS: The important genetic diversity of MA observed in infected goats from Spain contrasts with the overall homogeneity of the genomic background encountered in MA from sheep with CA in Southern France or Italy, suggesting that assessment of the disease status in endemic areas may require different approaches in sheep and in goats. A number of congruent sub-typing tools are now available for the differentiation of caprine isolates with comparable discriminatory powers.  相似文献   

20.
Listeria grayi is a nonpathogenic Gram-positive bacterium that demonstrates considerable similarities to other members in the genus Listeria, including the foodborne human pathogen Listeria monocytogenes and the animal pathogen Listeria ivanovii. A rapid diagnostic test to identify and diagnose listeriosis would be valuable, especially in cases where the presence of L. grayi may complicate diagnosis. This test would be based on a unique gene present in L. grayi. In this study, after comparative screening of a recombinant L. grayi DNA library by dot blot hybridization, an L. grayi specific clone (lgr20-246) with an insert of 722 bp was isolated. By applying PCR primers derived from a distinct region of the clone not shared by other bacteria, a specific band of 420 bp was amplified from the genomic DNA of L. grayi only and not of other Listeria species or common bacteria. These results suggest that the PCR assay employing primers lgr20-246F and lgr20-246R provides an independent and precise means of distinguishing L. grayi from other Listeria species and common bacteria. Therefore, it would be another useful technique for laboratory differentiation of Listeria bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号