首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nup475 (also known as tristetraprolin and TIS11) includes two zinc-binding domains of the form Cys-X8-Cys-X5-Cys-X3-His. These domains are required for rapid degradation of tumor necrosis factor (TNF) and other mRNAs through the interaction with AU-rich elements in their 3'-untranslated regions. The three-dimensional solution structure of the first domain was determined by multidimensional nuclear magnetic resonance spectroscopy, revealing a novel fold around a central zinc ion. The core structure is disk-like with a diameter of approximately 25 A and a width of approximately 12 A. This structure provides a basis for evaluating the role of individual residues for structural stability and for nucleic acid binding.  相似文献   

2.
3.
Regulation of messenger RNA stability by AU-rich elements is an important means of regulating genes induced by growth factors and cytokines. Nup475 (also known as tristetraprolin, or TIS11) is the prototype for a family of zinc-binding Cys(3)His motif proteins required for proper regulation of tumor necrosis factor mRNA stability in macrophages. We developed an Escherichia coli expression system to produce soluble Nup475 protein in quantity to study its RNA binding properties. Nup475 protein bound a tumor necrosis factor AU-rich element over a broad range of pH and salt concentrations by RNA gel shift. This binding was inhibited by excess zinc metal, providing a potential mechanism for previous reports of zinc stabilization of AU-rich element (ARE) containing messenger RNAs. Immobilized Nup475 protein was used to select its optimal binding site by RNA SELEX and revealed a strong preference for the extended sequence UUAUUUAUU, rather than a simple AUUUA motif. These findings were confirmed by site-directed mutagenesis of the tumor necrosis factor ARE and RNA gel shifts on c-fos, interferon-gamma, and interferon-beta ARE fragments. A weaker binding activity toward adenine-rich sites, such as a poly(A) tail RNA fragment, can partially disrupt the Nup475-tumor necrosis factor AU-rich element complex.  相似文献   

4.
Neural zinc finger factor 1 (NZF-1) is a nonclassical zinc finger protein involved in neuronal development. NZF-1 contains multiple copies of a unique CCHHC zinc-binding domain that recognize a promoter element in the β-retinoic acid receptor gene termed β-retinoic acid receptor element (β-RARE). Previous studies have established that a two-domain fragment of NZF-1 bound with zinc is sufficient for specific DNA binding. Proper functioning of the nervous system relies heavily on iron and misregulation of this highly redox active metal has serious consequences. Several classes of zinc finger proteins have been shown to bind other metal ions, including iron. To determine if ferrous iron can coordinate to the metal-binding sites of NZF-1 and assess the functional consequences of such coordination, a fragment of NZF-1 that contains two zinc-binding domains, NZF-1 double finger (NZF-1-DF), was prepared. UV–vis spectroscopy experiments demonstrated that Fe(II) is capable of binding to NZF-1-DF. Upon reconstitution with either Fe(II) or Zn(II), NZF-1-DF binds selectively and tightly (nanomolar affinity) to its target β-RARE DNA sequence, whereas apo-NZF-1-DF does not bind to DNA and instead aggregates.  相似文献   

5.
It has been reported recently that Sb(III) competes with Zn(II) for its binding to the CCHC zinc finger domain of the HIV-1 NCp7 protein, suggesting that zinc finger proteins may be molecular targets for antimony-based drugs. Here, the interaction of Sb(III) with a CCCH zinc finger domain, which is considered to play a crucial role in the biology of kinetoplastid protozoa, has been characterized for the first time. The binding characteristics of Sb(III) were compared between a CCCH-type peptide derived from a kinetoplastid protein and two different CCHC-type zinc finger peptides. The formation of 1 : 1 Zn-peptide and Sb-peptide complexes from the different peptides was demonstrated using circular dichroism, UV absorption, fluorescence spectroscopies and ESI-MS. Titration of the Zn-peptide complexes with SbCl(3) was performed at pH 6 and 7, exploiting the intrinsic fluorescence of the peptides. The differential spectral characteristics of the peptides allowed for competition experiments between the different peptides for binding of Zn(II). The present study establishes that Sb(III) more effectively displaces Zn(II) from the CCCH peptide than CCHC ones, as a result of both the greater stability of the Sb-CCCH complex (compared to Sb-CCHC complexes) and the lower stability of the Zn-CCCH complex (compared to Zn-CCHC complexes). Comparison of the binding characteristics of Sb(III) or Zn(II) between the CCHC-type peptides with different amino acid sequences supports the model that not only the conserved zinc finger motif, but also the sequence of non-conserved amino acids determines the binding affinity of Sb(III) and Zn(II). These data suggest that the interaction of Sb(III) with CCCH-type zinc finger proteins may modulate, or even mediate, the pharmacological action of antimonial drugs.  相似文献   

6.
7.
8.
The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 Å crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.  相似文献   

9.
Atomic absorption spectroscopy demonstrated that highly purified RNA polymerase II from the yeast Saccharomyces cerevisiae binds seven zinc ions. This number agrees with the number of potential zinc-binding sites among the 12 different subunits of the enzyme and with our observation that the ninth largest subunit alone is able to bind two zinc ions. The zinc-binding motif in the largest subunit of the enzyme was investigated using mutagenic analysis. Altering any one of the six conserved residues in the zinc-binding motif conferred either a lethal or conditional phenotype, and zinc blot analysis indicated that mutant forms of the domain had a 2-fold reduction in zinc affinity. Mutations in the zinc-binding domain reduced RNA polymerase II activity in cell-free extracts, even though protein blot analysis indicated that the mutant subunit was present in excess of wild-type levels. Purification of one mutant RNA polymerase revealed a subunit profile that was wild-type like with the exception of two subunits not required for core enzyme activity (Rpb4p and Rpb7p), which were missing. Core activity of the mutant enzyme was reduced 20-fold. We conclude that mutations in the zinc-binding domain can reduce core activity without altering the association of any of the subunits required for this activity.  相似文献   

10.
BACKGROUND: DNA primases catalyse the synthesis of the short RNA primers that are required for DNA replication by DNA polymerases. Primases comprise three functional domains: a zinc-binding domain that is responsible for template recognition, a polymerase domain, and a domain that interacts with the replicative helicase, DnaB. RESULTS: We present the crystal structure of the zinc-binding domain of DNA primase from Bacillus stearothermophilus, determined at 1.7 A resolution. This is the first high-resolution structural information about any DNA primase. A model is discussed for the interaction of this domain with the single-stranded DNA template. CONCLUSIONS: The structure of the DNA primase zinc-binding domain confirms that the protein belongs to the zinc ribbon subfamily. Structural comparison with other nucleic acid binding proteins suggests that the beta sheet of primase is likely to be the DNA-binding surface, with conserved residues on this surface being involved in the binding and recognition of DNA.  相似文献   

11.
12.
diTargiani RC  Lee SJ  Wassink S  Michel SL 《Biochemistry》2006,45(45):13641-13649
The protein tristetraprolin (TTP, also known as NUP475 and TIS11) is a nonclassical zinc finger protein that is involved in regulating the inflammatory response. Specifically, TTP binds to AU-rich sequence elements located at the 3'-untranslated region of cytokine mRNAs forming a complex that is degraded by the exosome. The nucleic acid binding region of TTP is comprised of two CysX(8)CysX(5)CysX(3)His domains that are activated in the presence of zinc. A two-domain construct of TTP (TTP-2D) has been cloned and overexpressed in E. coli. TTP-2D picks up visible red coloration from the expression media, unless it is expressed under iron-restricted conditions. The iron-binding properties of TTP-2D and the effect of iron substitution on RNA recognition have been investigated. Both Fe(II) and Fe(III) bind to TTP-2D and a full titration of Fe(III) with TTP-2D revealed that this metal ion binds with micromolar affinity. Upon reconstitution of TTP-2D with either Fe(II) or Fe(III), the protein recognizes a canonical RNA-binding sequence, UUUAUUUAUUU, with nanomolar affinity. Substitution of a single adenine or both adenines results in a decreased affinity of TTP-2D for the RNA molecule, demonstrating that both Fe(II)-TTP-2D and Fe(III)-TTP-2D selectively recognize a physiologically relevant RNA sequence. The relative affinities of Fe(II)-TTP-2D and Fe(III)-TTP-2D for the series of RNA sequences mirror those observed for Zn(II)-TTP-2D and suggest that iron is a viable substitute for zinc in this protein.  相似文献   

13.
Rpa12p is a subunit of RNA polymerase I formed of two zinc-binding domains. The N-terminal zinc region (positions 1-60) is poorly conserved from yeast to man. The C-terminal domain contains an invariant Q.RSADE.T.F motif shared with the TFIIS elongation factor of RNA polymerase II and its archaeal counterpart. Deletions removing the N-terminal domain fail to grow at 34 degrees C, are sensitive to nucleotide-depleting drugs and become lethal in rpa14-Delta mutants lacking the non-essential RNA polymerase I subunit Rpa14p. They also strongly alter the immunofluorescent properties of RNA polymerase I in the nucleolus. Finally, they prevent the binding of Rpa12p to immunopurified polymerase I and impair a specific two-hybrid interaction with the second largest subunit. In all these respects, N-terminal deletions behave like full deletions. In contrast, C-terminal deletions retaining only the first N-terminal 60 amino acids are indistinguishable from wild type. Thus, the N-terminal zinc domain of Rpa12p determines its anchoring to RNA polymerase I and is the only critical part of that subunit in vivo.  相似文献   

14.
Tristetraprolin (TTP) is the prototype of a family of CCCH tandem zinc finger proteins that can bind to AU-rich elements in mRNAs and promote their decay. TTP binds to mRNA through its central tandem zinc finger domain; it then promotes mRNA deadenylation, considered to be the rate-limiting step in eukaryotic mRNA decay. We found that TTP and its related family members could bind to certain isoforms of another AU-rich element-binding protein, HNRNPD/AUF1, as well as a related protein, laAUF1. The interaction domain within AUF1p45 appeared to be a C-terminal "GY" region, and the interaction domain within TTP was the tandem zinc finger domain. Surprisingly, binding of AUF1p45 to TTP occurred even with TTP mutants that lacked RNA binding activity. In cell extracts, binding of AUF1p45 to TTP potentiated TTP binding to ARE-containing RNA probes, as determined by RNA gel shift assays; AUF1p45 did not bind to the RNA probes under these conditions. Using purified, recombinant proteins and a synthetic RNA target in FRET assays, we demonstrated that AUF1p45, but not AUF1p37, increased TTP binding affinity for RNA ~5-fold. These data suggest that certain isoforms of AUF1 can serve as "co-activators" of TTP family protein binding to RNA. The results raise interesting questions about the ability of AUF1 isoforms to regulate the mRNA binding and decay-promoting activities of TTP and its family members as well as the ability of AUF1 proteins to serve as possible physical links between TTP and other mRNA decay proteins and structures.  相似文献   

15.
The TthL36 protein of the 50S ribosomal proteins from Thermus thermophilus has been found to contain the rare C(Xaa)2C(Xaa)12C(Xaa)4H (CCCH) sequence motif, a zinc finger binding motif, which for other zinc finger proteins is known to cleave RNA hairpins. In order to investigate the metal-binding properties of this T. thermophilus TthL36 protein, the core 26-mer polypeptide containing this CCCH motif was prepared by solid-phase peptide synthesis methods using Fmoc chemistry, purified by preparative RP-HPLC and characterized by circular dichroism, high-performance capillary zone electrophoresis and electrospray ionization mass spectrometry. Reaction of the acetamidomethyl (Acm)-protected polypeptide with iodine under acidic conditions resulted in the formation of the fully de-protected polypeptide. Of interest, the results demonstrate that the standard Acm-deprotection method with the synthetic TthL36 polypeptide using mercuric acetate in the presence of a large excess of 2-mercaptoethanol resulted in preferential formation of a very stable mercuro-polypeptide complex. The properties of the Acm-deprotected polypeptide in the presence of different metal ions were also investigated by spectroscopic methods. The results confirm that this TthL36 polypeptide containing the CCCH motif binds metal ions with different affinities, namely in the order Co(II)>Hg(II)>Zn(II).  相似文献   

16.
17.
The activation domain of the yeast Gal4 protein binds specifically to the Gal80 repressor and is also thought to associate with one or more coactivators in the RNA polymerase II holoenzyme and chromatin remodeling machines. This is a specific example of a common situation in biochemistry where a single protein domain can interact with multiple partners. Are these different interactions related chemically? To probe this point, phage display was employed to isolate peptides from a library based solely on their ability to bind Gal80 protein in vitro. Peptide-Gal80 protein association is shown to be highly specific and of moderate affinity. The Gal80 protein-binding peptides compete with the native activation domain for the repressor, suggesting that they bind to the same site. It was then asked if these peptides could function as activation domains in yeast when tethered to a DNA binding domain. Indeed, this is the case. Furthermore, one of the Gal80-binding peptides binds directly to a domain of the Gal11 protein, a known coactivator. The fact that Gal80-binding peptides are functional activation domains argues that repressor binding and activation/coactivator binding are intimately related properties. This peptide library-based approach should be generally useful for probing the chemical relationship of different binding interactions or functions of a given native domain.  相似文献   

18.
The tandem zinc finger (TZF) domain of the protein TIS11d binds to the class II AU-rich element (ARE) in the 3' untranslated region (3' UTR) of target mRNAs and promotes their deadenylation and degradation. The NMR structure of the TIS11d TZF domain bound to the RNA sequence 5'-UUAUUUAUU-3' comprises a pair of novel CCCH fingers of type CX(8)CX(5)CX(3)H separated by an 18-residue linker. The two TIS11d zinc fingers bind in a symmetrical fashion to adjacent 5'-UAUU-3' subsites on the single-stranded RNA via a combination of electrostatic and hydrogen-bonding interactions, with intercalative stacking between conserved aromatic side chains and the RNA bases. Sequence specificity in RNA recognition is achieved by a network of intermolecular hydrogen bonds, mostly between TIS11d main-chain functional groups and the Watson-Crick edges of the bases. The TIS11d structure provides insights into the RNA-binding functions of this large family of CCCH zinc finger proteins.  相似文献   

19.
In its tRNA acceptor end binding domain, the glutamyl-tRNA synthetase (GluRS) of Escherichia coli contains one atom of zinc that holds the extremities of a segment (Cys98-x-Cys100-x24-Cys125-x-His127) homologous to the Escherichia coli glutaminyl-tRNA synthetase (GlnRS) loop where a leucine residue stabilizes the peeled-back conformation of tRNAGln acceptor end. We report here that the GluRS zinc-binding region belongs to the novel SWIM domain family characterized by the signature C-x-C-xn-C-x-H (n = 6-25), and predicted to interact with DNA or proteins. In the presence of tRNAGlu, the GluRS C100Y variant has a lower affinity for l-glutamate than the wild-type enzyme, with Km and Kd values increased 12- and 20-fold, respectively. On the other hand, in the absence of tRNAGlu, glutamate binds with the same affinity to the C100Y variant and to wild-type GluRS. In the context of the close structural and mechanistic similarities between GluRS and GlnRS, these results indicate that the GluRS SWIM domain modulates glutamate binding to the active site via its interaction with the tRNAGlu acceptor arm. Phylogenetic analyses indicate that ancestral GluRSs had a strong zinc-binding site in their SWIM domain. Considering that all GluRSs require a cognate tRNA to activate glutamate, and that some of them have different or no putative zinc-binding residues in the corresponding positions, the properties of the C100Y variant suggest that the GluRS SWIM domains evolved to position correctly the tRNA acceptor end in the active site, thereby contributing to the formation of the glutamate binding site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号