首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic peptides mimic the assembly of transmembrane glycoproteins   总被引:17,自引:0,他引:17  
The composition of the intramembranous domains of many receptors are remarkably uniform, yet there is evidence that many transmembrane proteins associate together to form specific noncovalent homo- or heterocomplexes within the membrane. We have synthesized peptides corresponding to transmembrane domains of glycophorin A, glycophorin C, and the interleukin 2-receptor Tac antigen to study the interactions between transmembrane domains in vitro. Synthetic transmembrane glycophorin A peptide formed a complex with native glycophorin and glycoproteins of erythrocyte and K562 cell membranes that was reversible, specific, and could be demonstrated in a natural bilayer system in the absence of detergents. Synthetic glycophorin C and interleukin 2-receptor Tac antigen transmembrane peptides, although similar in amino acid composition, did not interact with glycophorin and did not inhibit the binding of the synthetic glycophorin A transmembrane peptide to native glycophorin. It is proposed that the transmembrane segments of receptor proteins contain not only the structural information necessary for insertion and anchoring but specific binding sites that mediate interactions between transmembrane glycoproteins.  相似文献   

2.
Microsomal preparations from human kidney were found to contain enzymic activity capable to transfer N-acetylgalactosamine from UDP-N-acetylgalactosamine to native bovine fetuin. The acceptor structures on the fetuin molecules were identified as N- as well as O-linked glycans with a markedly higher incorporation into the N-linked carbohydrate chains. Analysis of the alkali-labile transferase products by thin-layer chromatography indicated that the enzyme is able to synthesize structures having mobilities identical with those found on glycophorin from Cad erythrocytes. Mild acid treatment and enzymic hydrolysis with N-acetylhexosaminidase from jack beans of the N-linked transferase products suggested that beta-D-GalpNAc-(1----4)-[alpha-NeuAc-(2----3)]-beta-D-Galp-(1----s tructures were formed by the enzymic reaction on both N- and O-linked acceptors. The enzyme might, therefore, be involved in the biosynthesis of Sda (and Cad) antigenic structures. By use of various oligosaccharides, glycopeptides, and glycolipids having well characterized carbohydrate sequences, the acceptor-substrate specificity of the N-acetylgalactosaminyltransferase was determined. The enzyme generally recognized alpha-NeuAc-(2----3)-beta-D-Gal groups as acceptors, but in a certain conformation. Thus, tri- and tetra-saccharide alditols, native human glycophorin A, and GM3 were not acceptor substrates although they carry the potential disaccharide acceptor unit. When these structures were presented as sialyl-(2----3)-lactose or as a tryptic peptide from glycophorin A, they were shown to be rather good acceptor substrates for the N-acetyl-beta-D-galactosaminyltransferase from human kidney.  相似文献   

3.
Antibodies were raised in rabbits to a 51-amino acid cyanogen bromide-derived peptide of human erythrocyte glycophorin A which has been shown to represent the C-terminal end of the 131-residue polypeptide chain. Antibodies prepared by immunoadsorption were found to be directed against a chymotryptic-derived peptide (residues 102 to 118) of glycophorin A but were unreactive with either intact or proteolytically modified red blood cells. No cross-reactivity was observed with glycophorin B of human or sialoglycoproteins prepared from red blood cells of other mammalian species. Ferritin-antibody conjugates of such sera were applied to thin sections of intact red blood cells (frozen or protein embedded) and were found to localize exclusively to sites distributed uniformly along the inner surfaces of the membrane. No staining was seen on sections prepared from red blood cells from other species nor on sections of human red cells pretreated with unconjugated antisera. These results provide additional evidence in intact, fixed human erythrocytes that glycophorin A has a transmembrane orientation.  相似文献   

4.
Glycophorin was purified from human erythrocyte ghosts by the lithium diiodosalicylate -phenol procedure utilizing 125I-labeled lithium diiodosalicylate. The glycophorin preparation was found to contain 8.9 +/- 2.1 mol lithium diiodosalicylate per mol glycophorin. This bound lithium diiodosalicylate cannot be removed by extensive washings with a variety of polar organic solvents nor by treatment with the detergent, sodium deoxycholate. Further, the hydrophobic peptide produced from glycophorin by trypsin digestion contained 3.4 mol lithium diiodosalicylate per mol peptide.  相似文献   

5.
p55, a member of the membrane-associated guanylate kinase family, includes a PDZ domain that specifically interacts with the C-terminal region of glycophorin C in the ternary complex of p55, protein 4.1 and glycophorin C. Here we present the first NMR-derived complex structure of the p55 PDZ domain and the C-terminal peptide of glycophorin C, obtained by using a threonine to cysteine (T85C) mutant of the p55 PDZ domain and a phenylalanine to cysteine (F127C) mutant of the glycophorin C peptide. Our NMR results revealed that the two designed mutant molecules retain the specific interaction manner that exists between the wild type molecules and can facilitate the structure determination by NMR, due to the stable complex formation via an intermolecular disulfide bond. The complex structure provides insight into the specific interaction of the p55 PDZ domain with the two key residues, Ile128 and Tyr126, of glycophorin C.  相似文献   

6.
In this report we examine the primary sequence of a variant glycophorin obtained from erythrocytes of an individual who exhibits an unusual MNSs blood group phenotype. We show that this protein is a hybrid molecule constructed from sequences of alpha- and delta-glycophorins (glycophorins A and B) in a alpha-delta arrangement. Serological typing revealed that the donor's phenotype was M+N+S+s+U+; yet his erythrocytes reacted with some but not all examples of anti-S antisera. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a variant glycophorin band, and immunoblotting and reaction with N-glycanase suggested that its amino terminus resembled that of M-alpha-glycophorin but that its carboxyl terminus did not. A preparation highly enriched in the variant was obtained and used to generate peptide fragments for sequencing. The sequence revealed that the variant was a hybrid molecule whose amino terminus corresponded to M-alpha-glycophorin and whose carboxyl terminus corresponded to S-delta-glycophorin. CNBr cleavage of the variant glycophorin yielded four peptides. The sequence of the amino-terminal CNBr peptide (residues 1-8) was identical to the amino-terminal octapeptide of M-alpha-glycophorin. The proceeding peptide (residues 9-61) contained a segment identical to residues 9-58 of alpha glycophorin, but its carboxyl-terminal sequence had the Gly-Glu-Met sequence from S-delta-glycophorin (residues 27-29). The other two peptides, insoluble in aqueous solutions, contained highly hydrophobic sequences, identical to residues 30-52 and 53-68 of delta-glycophorin. Sequences of overlapping peptides generated by trypsin and V8 protease confirmed the hybrid nature of the variant glycophorin: residues 1-58 were identical to residues 1-58 of M-alpha-glycophorin, and residues 59-100 were entirely identical to residues 27-68 of S-delta-glycophorin. The variant glycophorin is expected to have 4 additional residues at its carboxyl terminus that correspond to the carboxyl-terminal residues 69-72 of delta-glycophorin. The amino acid sequence arrangement of the variant alpha-delta-glycophorin is an exact reciprocal of that found in another hybrid glycophorin, Sta, that is a delta-alpha hybrid. We propose that the two hybrid glycophorins represent the two possible products resulting from a reciprocal recombination event.  相似文献   

7.
Ladder-shaped polyether (LSP) compounds are thought to interact with transmembrane alpha-helices, but direct evidence has scarcely obtained for these interactions. We adopted a transmembrane alpha-helix of glycophorin A, and quantitatively evaluated its interaction with LSPs such as yessotoxin (YTX), desulfated YTX and artificial LSPs, using surface plasmon resonance and saturation transfer difference NMR. As a result, dissociation constants (K(D)) of YTX and desulfated YTX to a transmembrane domain peptide of glycophorin A were determined to be in the submillimolar range. Furthermore, in saturation transfer difference NMR, the signals at the polyene side chain and the angular methyl groups of YTX were significantly attenuated, which probably comprised an interacting interface of LSPs with a transmembrane alpha-helix. These results suggest that hydrophobic interaction plays an important role in molecular recognition of the alpha-helix peptide by LSPs.  相似文献   

8.
A new gene closely related to the glycophorin A (GPA) and glycophorin B (GPB) genes has been identified in the normal human genome as well as in that of persons with known alterations of GPA and/or GPB expression. This gene, called glycophorin E (GPE), is transcribed into a 0.6-kb message which encodes a 78-amino-acid protein with a putative leader peptide of 19 residues. The first 26 amino acids of the mature protein are identical to those of M-type glycophorin A (GPA), but the C-terminal domain (residues 27-59) differs significantly from those of glycophorins A and B (GPA and GPB). The GPE gene consists of four exons distributed over 30 kb of DNA, and its nucleotide sequence is homologous to those of the GPA and GPB genes in the 5' region, up to exon 3. Because of branch and splice site mutations, the GPE gene contains a large intron sequence partially used as exons in GPA and GPB genes. Compared to its counterpart in the GPB gene, exon 3 of the GPE gene contains several point mutations, an insertion of 24 bp, and a stop codon which shortens the reading frame. Downstream from exon 3, the GPE and the GPB sequences are virtually identical and include the same Alu repeats. Thus, it is likely that the GPE and GPB genes have evolved by a similar mechanism. From the analysis of the GPA, GPB and GPE genes in glycophorin variants [En(a-), S-s-U- and Mk], it is proposed that the three genes are organized in tandem on chromosome 4. Deletion events within this region may remove one or two structural gene(s) and may generate new hybrid structures in which the promoter region of one gene is positioned upstream from the body of another gene of the same family. This model of gene organization provides a basis with which to explain the diversity of the glycophorin gene family.  相似文献   

9.
The proton nuclear magnetic resonance (1H-NMR) spectra of glycophorin and its tryptic sialoglycopeptides were investigated. From the intensities of the assigned resonances it was concluded that all of the residues in the sialoglycopeptides are sufficiently mobile in conformation to give sharp resonances, while in glycophorin this is true for only approximately 80% of the peptide backbone. The resonances of the central sequence of some 20 of the hydrophobic residues are strongly broadened. This region is probably that of alpha-helical structure which is known to aggregate. The linewidths and intensities of the resonances are not, or only slightly, affected by changing the ionic strength, temperature or by carboxymethylation of the Met-81 residue in glycophorin. Glycophorin was found to bind about 100 mol sodium dodecylsulphate/mol protein as derived from studies on linebroadening of the latter's C-3 to C-11 methylene resonances. The bound dodecyl-sulphate probably increases the mobilities of the hydrophobic residues in the protein as these resonance intensities are increased by the binding. The carbohydrate chains in glycophorin were conformationally mobile; no evidence was found for tight carbohydrate-protein interactions. The relevance of flexible carbohydrate chains in membrane glycoproteins is discussed in relation to cell surface chemistry.  相似文献   

10.
The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands.  相似文献   

11.
The conformational space of a hydrophobic peptide fragment of glycophorin A in a lipid membrane was studied with the Monte Carlo method using the solvation model described in the first communication of this series. The simulation was performed for various starting orientations of the peptide relative the membrane bilayer: outside, inside, partially immersed, and transbilayer. We showed that the membrane substantially stabilizes the α-helical conformation of the central hydrophobic part of the glycophorin A molecule, which for the most part is immersed in the apolar core of the bilayer. For various conformational states, energy values were calculated and the orientations of the peptide relative to the membrane were characterized. Depending on the thickness of the bilayer, either an entirely α-helical conformation in transbilayer orientation or a conformation with a kink in the central part of the helix with theN- andC-termini exposed on one side of the membrane corresponds to the minimal-energy structure. The transmembrane orientation of glycophorin A is energetically advantageous when the membrane thickness is close to the length of its hydrophobic helical portion, which is consistent with the effect ofhydrophobic match observed experimentally. The prospects for further refinement of the model are discussed. For communication I, see [1].  相似文献   

12.
The intramembranous segment of glycophorin A has been localized to a 35-amino acid peptide. This has been isolated by a new procedure in which acid-insoluble peptides of a tryptic digest of detergent-purified glycophorin A are fractionated by countercurrent distribution. Amino acid sequence analyses, using both manual and automatic Edman degradation techniques, indicate that this peptide has a unique sequence in contrast to earlier work (J. P. Segrest, I. Kahane, R. L. Jackson, and V. T. Marchesi, 1973, Biochem. Biophys. Res. Commun., 49, 964–969). Ambiguities at three positions have been resolved, and sequencing errors at two additional positions have been corrected. One segment of this peptide has an uninterrupted stretch of 22 uncharged amino acids, and it is likely that this is the part which spans the lipid bilayer of the membrane. The complete 35-residue peptide has an apparent molecular weight in the 6000–8000 range, when analyzed on sodium dodecyl sulfate gels, suggesting that it forms dimers under these conditions. This result is consistent with our earlier proposal that intact glycophorin A molecules exist as dimers in sodium dodecyl sulfate which are stabilized by noncovalent associations between hydrophobic segments of their polypeptide chains.  相似文献   

13.
The major human erythrocyte membrane sialoglycoprotein (glycophorin A or MN glycoprotein) was purified from the red blood cells of an individual, homozygous for the Mi-VII gene in the Miltenberger subsystem of the MNSs blood-group system. The complete structure of a tryptic peptide comprising the residues 40-61 of glycophorin A was deduced from manual sequence analyses. The Mi-VII-specific glycophorin A was shown to exhibit an arginine----threonine and a tyrosine----serine exchange at the positions 49 and 52 respectively. The threonine-49 residue was found to be glycosylated. Inhibition assays demonstrated that one of the Mi-VII-specific antigen determinants (Anek) is located within the residues 40-61 of glycophorin A and comprises sialic acid residue(s) attached to O-glycosidically linked oligosaccharide(s). Our data contribute to an understanding of the Miltenberger system and provide an explanation at the molecular level for the previous finding that the erythrocytes from the Mi-VII homozygote lack a high-frequency antigen (EnaKT), located within the residues 46-56 of normal glycophorin A.  相似文献   

14.
Plasmodium falciparum merozoites, the extracellular stage of the erythrocytic cycle of the human malarial parasite, specifically invade human E. The major determinant of that specificity is the sialic acid residues of E glycophorin. In the present study we show that the merozoite surface Ag, Pf200 (m.w. 195,000 to 205,000), of two different isolates of P. falciparum, binds to the surface of human E but not E from other species not invaded by P. falciparum. Pf200 does not bind to neuraminidase-treated E, indicating the interaction is dependent on sialic acid residues. Binding is inhibited by soluble glycophorin and selective mAb against the glycosylated domain of glycophorin, but not by a mAb against the peptide domain of glycophorin. mAb.5B1 previously identified as reacting with Pf 200, blocks binding of the protein to the E. Binding between Pf200 and the E is not high affinity, as Pf200 can be released from the surface by 0.25 M NaCl.  相似文献   

15.
Three 2-acetamido-2-deoxy-alpha-D-galactopyranoses attached to Ser2, Thr3 and Thr4 of the amino-terminal portion of glycophorin AM are responsible for the so-called TN blood group specificity. The corresponding glycopeptide H2N-Ser-Ser*-Thr*-Gly-OH obtained by a stepwise peptide coupling strategy was submitted to a detailed high-field nuclear magnetic resonance (n.m.r.) analysis. 13C-n.m.r. spectrum confirms the validity of previous assignments made on M sialo and asialoglycopeptides obtained by specific degradation of human glycophorin AM. In addition, the 400 MHz 1H-n.m.r. spectrum allowed most of the proton resonances to be assigned. A careful examination of the chemical shifts and coupling constants revealed some interesting features of the conformational properties of the GalNAc-Ser and GalNAc-Thr linkage as well as of the rotational isomerism of Thr and Ser side-chains. The data give conclusive evidence that high-field n.m.r. spectroscopy can be successfully used to gain structural and dynamic information on rather sophisticated glycopeptides.  相似文献   

16.
In the erythrocyte, a membrane-bound serine/threonine protein kinase (a casein kinase) has been shown to phosphorylate a number of membrane proteins, modulating their function. Here we report that the membrane-bound protein kinase binds to membranes by an association with a minor membrane component contained in preparations of glycophorin (possibly a minor glycophorin). The binding of the kinase to glycophorins does not significantly modify kinase activity. However, upon binding, the kinase activity is potently inhibited by phosphatidylinositol 4,5-bisphosphate, and the affinity of the kinase for the glycophorins is increased. Other phospholipids or polyanions such as inositol 1,4,5-trisphosphate or 2,3-diphosphoglycerate do not affect protein kinase activity when the kinase is bound to membranes but do inhibit the solubilized membrane-bound kinase. In the erythrocyte, there is a cytosolic form of the casein kinase which is very similar, having the same molecular weight and substrate specificity as the membrane-bound casein kinase. The cytosolic casein kinase is inhibited by 2,3-diphosphoglycerate but much less so by glycophorin preparations containing phosphoinositol 4,5-bisphosphate. When the sequences of both casein kinases were compared by two-dimensional peptide mapping, it was found that the two kinases were very similar but not identical.  相似文献   

17.
Subunit structure of human erythrocyte glycophorin A.   总被引:21,自引:0,他引:21  
Glycophorin A is a sialoglycoprotein isolated from human erythrocyte membranes which seems to exist as stable dimeric complexes in the presence of sodium dodecyl sulfate. When analyzed by dodecyl sulfate acrylamide electrophoresis this molecule forms two PAS-stainable bands (PAS-U and PAS-2) which are reversibly interconvertible. This change in electrophoretic mobility is dependent on the concentration of dodecyl sulfate, the use of Trisbuffer systems, the protein concentration in the incubation mixture, and the duration and temperature of incubation before electrophoresis. Reducing agents do no influence the results. Chromatography of the sialoglycopeptides on Sepharose columns in dodecyl sulfate before and after heat treatment gave similar results. A small hydrophobic peptide (T-6) derived from glycophorin A was able to prevent reassociation of the monomeric subunits back to the higher molecular weight form. This peptide was able to bind to the subunit of glycophorin A, but not to the high molecular weight complex. These results are consistent with a model of glycophorin A composed of two subunits which can dissociate and reassociate in the presence of detergents. These subunits may interact via the hydrophobic portions of the polypeptide chains.  相似文献   

18.
Polyclonal anti-serum made against murine glycophorin gp3 (alpha gp) recognizes the endothelial albumin binding glycoprotein, gp60. In this study, we investigated the nature (peptide vs. carbohydrate) of the common epitope. First, a new technique was developed to remove oligosaccharides from glycoproteins that were first immobilized on filters and then subjected to beta-elimination. When greater than 90% of the glycans of gp60 were removed, alpha gp still recognized gp60 without apparent loss of affinity. Second, we used brefeldin A to accumulate unglycosylated glycophorin precursors in order to affinity-purify peptide-specific alpha gp immuno-globulins; these antibodies recognized gp60. Finally, alpha gp recognized from in vitro translations a 48 kDa putative polypeptide precursor of gp60. These different approaches indicate that gp60 and gp3 have at least one common epitope in their peptide backbones.  相似文献   

19.
The conformational space of a hydrophobic peptide fragment of glycophorin A in a lipid membrane was studied with the Monte Carlo method using the solvation model described in the first communication of this series. The simulation was performed for various starting orientations of the peptide relative to the membrane bilayer: outside, inside, partially immersed, and transbilayer. We showed that the membrane substantially stabilizes the alpha-helical conformation of the central hydrophobic part of the glycophorin A molecule, which for the most part is immersed in the apolar core of the bilayer. For various conformational states, energy values were calculated and the orientations of the peptide relative to the membrane were characterized. Depending on the thickness of the bilayer, either an entirely alpha-helical conformation in transbilayer orientation or a conformation with a kink in the central part of the helix with the N- and C-termini exposed on one side of the membrane corresponds to the minimal-energy structure. The transmembrane orientation of glycophorin A is energetically advantageous when the membrane thickness is close to the length of its hydrophobic helical portion, which is consistent with the effect of "hydrophobic match" observed experimentally. The prospects for further refinement of the model are discussed.  相似文献   

20.
Human erythrocyte glycophorin is one of the best characterized integral membrane proteins. Reconstitution of the membrane-spanning hydrophobic segment of glycophorin (the tryptic insoluble peptide released when glycophorin is treated with trypsin) with liposomes results in the production of freeze-fracture intrabilayer particles of 80 Å diameter (Segrest, J.P., Gulik-Krzywicki, T. and Sardet, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 3294–3298), with particles appearing at or above a tryptic insoluble peptide concentration of 4 mmol per mol phosphatidylcholine. In the present study, increasing concentrations of tryptic insoluble peptide were added to sonicated small unilamellar egg phosphatidylcholine vesicles and the rate of efflux of 22Na+ was examined by rapid (30 s) gel filtration on Sephadex G-50. Below a concentation of 3–5 mmol tryptic insoluble peptide/mol phosphatidylcholine, 22Na+ efflux occurs at a constant slow rate at given tryptic insoluble peptide concentrations. Above a concentration of 3–5 mM, the rate of efflux is biphasic at given tryptic insoluble peptide concentrations, exhibiting both an initial fast and a subsequent slow component. On the basis of graphic and computer curve-fitting analysis, with increasing tryptic insoluble peptide concentration, the rate of the slow component reaches a plateau at a tryptic insoluble peptide concentration of 3–5 mM and remains essentially constant until much higher concentrations are reached; the fast component increases linearly with increasing tryptic insoluble peptide concentration well beyond 5 mM. The most consistent interpretation of this data is as follows. The slow 22Na+ efflux component is due to perturbations of small unilamellar vesicle integrity by tryptic insoluble peptide monomers. At a tryptic insoluble peptide concentration of 3–5 mmol/mol, a critical concentration is reached following which there is intrabilayer tryptic insoluble peptide self-association. The fast 22Na+ efflux component is due to the increasing presence of tryptic insoluble peptide self-associated multimers the 80-Å particles seen by freeze-fracture electron microscopy) which results in a significantly larger bilayer defect than do tryptic insoluble peptide monomers. The failure of complete saturation of efflux by the fast component is ascribed to the presence of two populations of small unilamellar vesicles, some of which contain tryptic insoluble peptide multimers and some of which do not.Addition of cholesterol to the tryptic insoluble peptide/phosphatidylcholine vesicles decreases the rate of 22Na+ efflux by inhibiting primarily the fast component. Freeze-fracture electron microscopy indicates that the presence of cholesterol has no effect on the size, number or distribution of 80-Å intra-bilayer particles in the tryptic insoluble peptide/phosphatidylcholine vesicles. These results are consistent with a mechanism to explain the fast Na+ efflux component involving protein-lipid boundary perturbations.Efflux of 45Ca2+ from phosphatidylcholine vesicles is also enhanced by incorporation of tryptic insoluble peptide, but only if divalent cations (Ca2+ or Mg2+) are present in the external bathing media as well as inside the sonicated vesicles. If monovalent Na+ only is present in the bathing media no 45Ca2+ efflux is seen. Under conditions where 45Ca2+ efflux is seen, both a fast and a slow component are present, although both appear lower than corresponding rate constants for 22Na+ efflux. These results suggest a coordinated mechanism for ion efflux induced by tryptic insoluble peptide and, together with the 22Na+ efflux studies, may have mechanistic implications for the transbilayer phospholipid exchange (flip-flop) suggesed to be induced at glycophorin/phospholipid interfaces (de Kruiff, B., van Zoelen, E.J.J. and van Deenen, L.L.M. (1978) Biochim. Biophys. Acta 509, 537–542).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号