首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns in plant–soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions. We hypothesized that (i) soil characteristics might affect the AMF community and (ii) there are differences between the AMF communities (modules) associated with plants exclusive to gypsum soils (gypsophytes) and those associated with plants that show facultative behavior on gypsum and/or marly-limestone soils (gypsovags). We used indicator species and network analyses to test for differences between the AMF communities harbored in gypsophyte and gypsovag plants. We recorded 46 operational taxonomic units (OTUs) belonging to nine genera of Glomeromycota. The indicator species analysis showed two OTUs preferentially associating with gypsum soils and three OTUs preferentially associating with marly-limestone soils. Modularity analysis revealed that soil type can be a major factor shaping AMF communities, and some AMF groups showed a tendency to interact differently with plants that had distinct ecological strategies (gypsophytes and gypsovags). Characterization of ecological networks can be a valuable tool for ascertaining the potential influence of above- and below-ground biotic interactions (plant-AMF) on plant community composition.  相似文献   

2.
Probably gypsophytes are the most interesting set of edaphic specialists of arid and semiarid climates. Despite they conform a global biodiversity priority, there are almost no information about those adaptive traits that confer such a specialised behaviour. Our broad hypothesis is that gypsophytes are “refuge-endemics” that are able to grow on gypsum soils due to their ability to surpass extremely hard gypsum soil physical crust during emergence. With this in mind we have conducted an experimental approach combining field and greenhouse assays. Seeds from two gypsophytes, genuine and widely distributed in the Iberian Peninsula gypsophytes (Helianthemum squamatum and Lepidium subulatum) and one gypsovag (Teucrium capitatum), a generalist plant that can also grow on gypsum soils were used in our experiments. Two complementary experimental approaches were conducted. The first involved a field experiment in which the presence or absence of the physical crust together with the sowing date were manipulated and a greenhouse experiment in which the irrigation amount and the types of soil were controlled. Variables of interest were the percentage of germination, growth and survival. In the field experiment we found a significant decrease in the final germination of the gypsovag in the plots with intact crusts. On the other hand, H. squamatum is able to grow in the three tested soils, despite higher survival and growth on genuine gypsum soils. Our results confirm the hypothesis that gypsum edaphic specialists base their behaviour to a great extent on the ability to surpass extremely hard gypsum surface crusts, although this seems a marginal adaptive trait as shown by the capability to grow on a complete array of soils and the negative effect of the crust along the earlier development life stages of gypsophytes. Furthermore, a gypsovag such as Teucrium capitatum presents extreme difficulties to emerge on non-disturbed gypsum physical crusts but once surpassed its growth and survival is not limited.  相似文献   

3.
It has been proposed that fertile soils reduce the incidence of gall-forming insect (GFI) species in plant communities. This is known as the soil fertility hypothesis. The main objective of this study was to analyze the spatial distribution of GFI species under different habitats in a tropical dry forest at the Chamela-Cuixmala Biosphere Reserve, Mexico. Eight habitats which differ in soil type, topography, nutrient availability and vegetation were chosen. We found that 38 GFI species specialize on their host plant species. GFI species richness was negatively correlated with phosphorous and nitrogen availability. Using phosphorous as an indicator of soil fertility, we found low frequency and density of GFI on fertile soils. Our study indicates that soil fertility is one of the factors that negatively affects the patterns of spatial distribution of species richness, incidence and abundance of GFI at the community level in two different ways: i) indirectly affecting GFI species richness in plants adapted to infertile soils and ii) directly affecting GFI responses to plant traits of hosts found in a fertility gradient.  相似文献   

4.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   

5.
Plant species endemic to gypsum occur in arid and semiarid regions worldwide and are an important component of biodiversity conservation, but gypsophile habitat selection within more arid gypsum environments remains largely unexplored. Our goal in this study was to inform efforts to introduce new populations of the endangered Mojave Desert gypsophile Arctomecon humilis Coville (dwarf bear poppy) through direct seeding at more remote locations that are less impacted by threats associated with urban expansion. We characterized approximately 600 ‘safe sites’ where seedlings of this species had recently established and examined distribution of these safe sites across habitats on the gypsum cuesta landscape. Using drone imagery at the landscape scale, we found that juveniles showed an even stronger preference for the white surface cover class than adults and were also markedly under-represented in the dark crust cover class. Two-thirds of the juveniles were found on knoll tops and upper back slopes, while only 3% were found on bottoms. At the plot scale, most juveniles were associated with surfaces where lichen crust and white gravel occurred in a fine-scale mosaic. At the emergence microsite scale, two-thirds of the seedlings had emerged from narrow gaps between two or more contact substrates, most often lichen crust and gravel. Even when seedlings emerged from lichen crust alone, emergence was usually from a gap and not from the surface of intact lichen thallus. On bottoms, toe slopes, and lower back slopes where dark lichen crust is often heavy and continuous, very few juveniles were found. Fewer than 7% of juveniles were found in direct association with living adults, likely because of adaptations for both enhanced seed dispersal and a persistent seed bank. There was also no evidence for establishment facilitation by nurse plants of other species. These results are contrasted with gypsophile establishment ecology in less arid environments. They also enable drone-based screening at the landscape scale as an efficient first step in selection of introduction sites.  相似文献   

6.
The restriction of vascular plants to gypsum-rich soils under arid or semiarid climates has been reported by many authors in different parts of the world. However, factors controlling the presence of gypsophytes on these soils are far from understood. We investigated the establishment of Lepidium subulatum, a gypsophyte, in a nondisturbed semiarid gypsum-soil landscape in central Spain, both from spatial and temporal perspectives. Over 1400 seedlings were tagged, and their growth and survival were monitored for a 2-yr period. Several biotic and abiotic variables were measured to determine the factors controlling the emergence and early survival. These variables included the cover of annual plants, bryophytes, lichens, litter, gypsum crystals, bare fraction and cover of each perennial plant, and several soil properties (gravel, fine gravel, and fine-earth fraction, conductivity, pH, gypsum content, organic matter and penetrometer soil resistance). Our results support the linkage of gypsophily with some physical properties of the surface crust. Seedlings tended to establish on the gypsum surface crust, and their survival was size dependent, probably as a consequence of the necessity of rooting below the surface crust before summer drought arrives. However, once seedlings emerged, a higher survival rate occurred on the alluvial soils of the piedmont-slope boundary where soil crusts are absent or thinner. We conclude that Lepidium subulatum may be considered a refuge model endemic with a distribution range that occupies a reduced fraction of a wider habitat from which it is probably excluded by competition.  相似文献   

7.
Specialized plant species have long served as geobotanical tools for locating mines and ores. Despite their importance, not much research has been dedicated to studying the ecology of endemic specialized plant species, such as those of gypsum or calcareous habitats. Here we describe and analyze the occurence of endemic plant species in gypsum habitats of the south–central Alborz Ranges (Semnan), Iran, in relation to altitude and soil properties. Ecological data and soil samples were collected from 120 plots along along an altitudinal gradient correlated with differences in soil properties. Forty seven plant species, including 6 species endemic to the Semnan area and 20 species endemic to Iran, were identified. The occurrence of the species were analyzed using canonical correspondence (CCA) and detrended correspondence Analysis (DCA), and based on the results the species were categorized as gypsophytes G1 (1600–2245 m a.s.l.), calciphytes (1500–1700 m a.s.l.), gypsophytes G2 (1300–1600 m a.s.l.) and halophytes (1100–1300 m a.s.l.). Gypsum content, elevation and salinity (Na content) were identified as the environmental factors having the largest effects on vegetation compositon. Endemic Semnan plant species included Astragalus fridae, Euphorbia gypsicola and Gypsophila mucronifolia at higher altitudes, and Astragalus semnanensis, Centaurea lachnopus and Nepeta eremokosmos at lower altitude gypsic soils. More frequent Iranian endemic plant species included Moltkia gypsaceae at higher altitudes, Echinops nizvanus and Acantholimon cymosum at lower altitude gypsic soils, Astragalus glaucacanthos, A. podolobus and A. microcephalus occurring mainly in calcic carbonate soil, and halophyte species such as Artemisia sieberi dominating at lower altitudes with more saline–alkaline soil.  相似文献   

8.
The presence of species and their cover values together with soil and topographic characteristics were recorded at 40 sites along an altitudinal gradient of the Puna Belt at Pozuelos, in the High Andes in northwest Argentina. Classification and ordination of plant assemblages showed that soil and topography were the best predictors of the variation in species distribution. The different plant assemblages which occur along the topographic gradient follow the geographic variation in rainfall in this Andean region. Perennial bushes and grasses colonize the plains and slopes with fine textured soils which retain their water content. In contrast, deciduous bushes and cactuses grow on steep, rocky, dry slopes. Open woods also occur on east-facing steep, rocky slopes which are sheltered from winds.  相似文献   

9.
Gypsum outcrops of southeastern Spain (Almeria) have been highlighted as the most outstanding for the conservation of Iberian gypsum flora by flora rarity and richness, as vascular as cryptogamic plants. However, plant community distribution patterns according to soil chemical properties have been little studied in these gypsum areas. Spatial distribution pattern of plant communities in gypsum hills and its relation to soil chemical properties was surveyed in this study. Twenty-one plots (5 × 5 m) were settled along a semiarid gypsum gradient in Rio de Aguas Basin. Soil samples were taken from each plot’s superficial layer for chemical analysis. Plant canopy cover was sampled at species level. Three plant community bands are identified (from bottom to top) as level I (Flat Piedmont Zone), level II (Hill Slope Zone), and level III (Hill Top Zone). Gypsophyte species (mainly found in level II) appear to be specifically adapted to nutrient-stressed environments (high sulfate content and deficiency in some soil nutrients). Nutrients play an essential ecological role in determining species distribution and community composition. Since this area is a very important site for extracting very high quality gypsum, the pattern described here can be used as a useful tool for ecological restoration of gypsum quarries. Considering environmental heterogeneity of gypsum areas (as an “ecosystem of reference”) is crucial for a successful ecological restoration.  相似文献   

10.
Abstract. We studied the distribution of litter in a shrubland of the Negev with a semi‐arid Mediterranean climate of less than 200 mm of rainfall per year. Our focus was on the effects of litter on properties of landscape patches relevant to ecosystem processes (water runoff and soil erosion), annual plant community responses (seedling density, biomass production and species richness), and animal activity (soil disturbance by termites). Three 60‐m transects, extending across a pair of opposing north‐ and south‐facing slopes and their drainage channel, showed that litter accumulates not only under shrubs, but to a lesser extent also on the crusted inter‐shrub open areas. We used 35 experimental units (‘cells’, 0.5m × 1 m), each containing a crust and a shrub patch. Because runoff flows from crusted patches and is intercepted by shrub patches, the latter were in the lower third of the cells. Leaf litter was added in single and double amounts providing ca. 0.5 and 1.0 cm litter depth, to either, both, or none of the patches. Litter addition significantly decreased the amount of runoff, regardless of the location and amount of litter applied. Litter on the crust increased species number and seedling density of species with low abundance. Adding a double litter layer increased annual plant biomass production, while a single amount had no effect. Litter addition to the shrub patch affected neither biomass nor species richness. Litter addition to both patches at both quantities caused a large increase in termite activity. Termites caused disturbance by disrupting the crust, which may contribute to the reduction in runoff amounts. In the open, flat crust patches, annual plant communities are limited in their productivity and species richness, as there are few structures stopping the outflow of water, soil and seeds. Litter adds such structures, but affects the plant communities only when added to litter‐free crust. Litter accumulation and its patchy distribution have large impacts on landscape patch properties affecting resource distribution, plant productivity and diversity, and animal activity. Therefore, understanding litter distribution in relation to the patchy structure of the landscape of semi‐arid shrubland should be viewed as an important component of shrubland management.  相似文献   

11.
Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species–area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity–environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species–area curves indicated the various origins of forest communities. Variable diversity–environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.  相似文献   

12.
Plant facilitation (positive plant–plant interactions) strongly influences biodiversity, structure, and dynamics in plant communities, and the topic has received considerable attention among ecologists. Most studies of facilitation processes by shrubs have been conducted at small spatial scales between shrubs and their neighboring species. Yet, we know little about whether facilitation processes by shrubs at a small scale (i.e., a patch scale) also work at a larger scale (i.e., a site scale) in terms of the maintenance of biodiversity. Here, we report that the facilitative effects of shrubs on plant diversity at a larger scale can be explained by changing ecological stoichiometry. The soil fertility showed unimodal shape along shrub cover gradient, suggesting that the facilitative effects of a shrub do not necessarily increase as the shrub develops. The unimodal shape of dependence of plant species richness on shrub cover probably was generated by the unimodal dependence of soil fertility on shrub cover. Soil nutrient enrichment by shrubs shifted low N:P ratios of plant communities with low levels of shrub cover to more balanced N:P ratios at intermediate levels of shrub cover. At the peak N:P ratio along the gradient in shrub cover, the maximum species richness and functional richness were observed, which was consistent with the unimodal relationship predicted by the resource balance hypothesis. Thus, our findings showed that facilitation processes by shrubs at a patch scale also work at a larger scale in terms of the maintenance of biodiversity. Because observed larger-scale facilitation processes are enhanced at some intermediate levels of shrub cover, this study offers practical insight into the need for management practices that allow some intermediate levels of grazing by livestock for optimizing the role of larger-scale facilitation processes in the maintenance of biodiversity and ecosystem functioning in arid and semi-arid rangelands.  相似文献   

13.
The potential allelopathic role of Artemisia herba-alba has been evaluated in order to explain the community pattern of the gypsum semiarid environments of central Spain. This pattern shows a sharp ecotone between a gypsophile sparse shrubby community dominated by Helianthemum squamatum, which grows on slopes with gypsum surface crusts, and a nitrohalophilous community on the gypsum alluvial soils of piedmont dominated by Artemisia herba-alba. In order to explain this pattern, resource limitation was discarded because no significant differences in several soil parametrers, but fine earth fraction and organic matter content, had been detected in a previous study. Results confirm the inhibitory effect of aqueous extracts on the final germination percentage of scarified seeds of Helianthemum squamatum and also on the shape of the germination curves, which indicate delay of germination for the aqueous extracts. Assays with soil of the Artemisiacommunity (three types) showed that germination was strongly inhibited in soils obtained below the canopy of mature plants (litter maintained) and retarded in the other treatments. We suggest that the spatial community pattern detected in this gypsum environment and characterised by a sharp ecotone could be at least partially controlled by interference through allelopathy. This determines the excliusion of Helianthemum squamatum plants from alluvial soils.  相似文献   

14.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

15.
Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance of these conditions is limited due to the scarcity of studies, especially in the High Arctic. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast‐inland gradient in Northeast Greenland using a stratified random design. We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant‐plant interactions. Latent variable models were used to explain patterns in plant community composition. Species richness was mainly determined by variations in soil water content, which explained 35% of the variation, and to a minor degree by other variables related to topography. Species richness was not directly related to macroclimate. Latent variable models showed that 23.0% of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic variation increased the model's explanatory power by 4.2%. Our results suggest that the main impact of climate changes in the High Arctic will be mediated by their influence on local soil water conditions. Increasing temperatures are likely to cause higher evaporation rates and alter the distribution of late‐melting snow patches. This will have little impact on landscape‐scale diversity if plants are able to redistribute locally to remain in areas with sufficient soil water.  相似文献   

16.
Topography is rarely considered as an independent goal of restoration. However, topography determines microenvironmental conditions and hence living conditions for species. Restoring topography may therefore be an important first step in ecological restoration. We aimed at establishing the relative importance of topography where coastal dunes destroyed by mining are rebuilt as part of a rehabilitation program. We assessed the response of (1) microclimatic and soil conditions, and (2) woody plant and millipede species richness and density, to location-specific topographic profiles. We enumerated the topographic profile using variables of dune morphology (aspect, elevation, and gradient) as well as relative position on a dune (crest, slope, and valley). Temperature, relative humidity, and light intensity varied with aspect, elevation, gradient, and position. However, regeneration age was a better predictor of soil nutrient availability than these topographic variables. Age also interacted with topographic variables to explain tree canopy density and species richness, as well as millipede species richness. The density of keeled millipedes (forest specialists) was best explained by topographic variables alone. The transient nature of these new-growth coastal dune forests likely masks topography-related effects on communities because age-related succession (increasing structural complexity) drives the establishment and persistence of biological communities, not habitat conditions modulated by topography. However, our study has shown that the microhabitats associated with topographic variability influence specialist species more than generalists.  相似文献   

17.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

18.
Native unploughed tallgrass prairie from Konza Prairie, Kansas, USA is described with respect to plant species compositional changes over a five year period in response to fire and topography. The principal gradient of variation in the vegetation is related to time since burning. Species show an individualistic response in terms of relative abundance to this gradient. Both the percentage of and cover of C4 species and all grasses decrease as the prairie remains unburnt. Forb and woody plant species numbers and abundance increase along this gradient. A secondary gradient of variation reflects topography (i.e. upland versus lowland soils). Upland soils support a higher species richness and diversity. Upland and lowland plant assemblages are distinct except on annually burnt prairie. The interaction between burning regime, topography and year-to-year climatic variation affects the relative abundance of the plant species differentially. The most dominant species overall, Andropogon gerardii, was affected only by year-to-year variation (i.e. climate). Its position at the top of the species abundance hierarchy was unaffected by burning regime or soil type. The other dominant species showed a suite of varying responses to these factors.Deceased May, 1986.  相似文献   

19.
The Pinacate region is part of the Gran Desierto, one of the driest deserts in North America. The presence-absence of perennial plant species, together with soil and landform characteristics, were registered in 110 sampling sites within this region. A classification and ordination of plant communities showed soil and landform units to be good predictors of plant variation. Plant distribution and species richness were also strongly related to altitude and rockiness. A Generalised Linear Model was used to fit the response curves of individual species.The environmental factors related with plant distribution are indicators of the water regime within a given site. Plant communities repeat along topographic gradients the large-scale biogeographic variation of the Sonoran Desert. Microphyllous shrubs colonise the drier bajada slopes, while more diverse communities, dominated by cacti and drought-deciduous trees, grow on the wetter pediments and in pockets within rocky soils.  相似文献   

20.
Question: How do soils and topography influence Amazonian tree diversity, a region with generally nutrient‐starved soils but some of the biologically richest tree communities on Earth? Location: Central Amazonia, near Manaus, Brazil. Methods: We evaluated the influence of 14 soil and topographic features on species diversity of rain forest trees (≥10 cm diameter at breast height), using data from 63 1‐ha plots scattered over an area of ~400 km2. Results: An ordination analysis identified three major edaphic gradients: (1) flatter areas had generally higher nutrient soils (higher clay content, carbon, nitrogen, phosphorus, pH and exchangeable bases, and lower aluminium saturation) than did slopes and gullies; (2) sandier soils had lower water storage (plant available water capacity), phosphorus and nitrogen; and (3) soil pH varied among sites. Gradient 2 was the strongest predictor of tree diversity (species richness and Fisher's α values), with diversity increasing with higher soil fertility and water availability. Gradient 2 was also the best predictor of the number of rare (singleton) species, which accounted on average for over half (56%) of all species in each plot. Conclusions: Although our plots invariably supported diverse tree communities (≥225 species ha?1), the most species‐rich sites (up to 310 species ha?1) were least constrained by soil water and phosphorus availability. Intriguingly, the numbers of rare and common species were not significantly correlated in our plots, and they responded differently to major soil and topographic gradients. For unknown reasons rare species were significantly more frequent in plots with many large trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号