首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation and dephosphorylation are believed to play key roles in regulation of sperm motility. Here we examine the effect of temperature on hamster sperm motility and protein tyrosine phosphorylation status. As in previous work, a decrease from 37 degrees C to 22 degrees C caused loss of hyperactivated motility. We now find that cooling also produces a dephosphorylation of several 48-80-kDa flagellar peptides. A return to 37 degrees C restored hyperactivation but resulted in rephosphorylation of only an 80-kDa protein. Conversely, hyperactivation and phosphorylation of the 80-kDa component were insensitive to incubation temperature for sperm incubated with the protein phosphatase inhibitor, calyculin A, or for sperm demembranated by detergent extraction. These results strongly indicate that the temperature-sensitive tyrosine phosphorylation status of an 80-kDa sperm flagellar peptide explains the sensitivity of hyperactivation to temperature.  相似文献   

2.
Bovine sperm in neat caudal epididymal fluid become motile in response to either pH elevation or dilution of the fluid. Buffers containing permeant weak acids at physiologic concentrations are able to mimic these effects of caudal fluid. These observations lead to the hypothesis that a pH-dependent epididymal fluid quiescence factor regulates bovine sperm motility by modulating sperm intracellular pH (pHi). Here we report that sperm pHi, measured with the fluorescent pH probe carboxyfluorescein, increases by approximately 0.4 units in response to either of these motility-initiating manipulations. At least 26 discrete phosphoprotein bands are distinguishable by sodium dodecylsulfate-polyacrylamide gel electrophoresis after incubation of intact caudal sperm with 32PO4. A prominent phosphoprotein, with Mr approximately 255,000 (pp255) and a relatively high specific radioactivity, is reversibly dephosphorylated in response to elevations in pHi that initiate sperm motility. Unlike most of the sperm phosphoproteins, the extraction of pp255 requires reducing agents. This phosphoprotein cosediments with the sperm heads but not the tail, midpiece, soluble, or plasma membrane fractions. No other pHi-dependent phosphorylation changes are apparent in gels of whole sperm extracts. However, subcellular fractionation allows the detection of increased phosphorylation of two plasma membrane phosphoproteins (Mr approximately 105,000 and 97,000) and decreased phosphorylation of another plasma membrane phosphoprotein (Mr approximately 120,000) in response to increasing pHi. This is the first report describing changes in endogenous phosphoproteins from intact motile and nonmotile bovine sperm that are regulated by pHi.  相似文献   

3.
Mammalian sperm are not able to fertilize immediately upon ejaculation; they become fertilization-competent after undergoing changes in the female reproductive tract collectively termed capacitation. Although it has been established that capacitation is associated with an increase in tyrosine phosphorylation, little is known about the role of this event in sperm function. In this work we used a combination of two dimensional gel electrophoresis and mass spectrometry to identify proteins that undergo tyrosine phosphorylation during capacitation. Some of the identified proteins are the mouse orthologues of human sperm proteins known to undergo tyrosine phosphorylation. Among them we identified VDAC, tubulin, PDH E1 beta chain, glutathione S-transferase, NADH dehydrogenase (ubiquinone) Fe-S protein 6, acrosin binding protein precursor (sp32), proteasome subunit alpha type 6b and cytochrome b-c1 complex. In addition to previously described proteins, we identified two testis-specific aldolases as substrates for tyrosine phosphorylation. Genomic and EST analyses suggest that these aldolases are retroposons expressed exclusively in the testis, as has been reported elsewhere. Because of the importance of glycolysis for sperm function, we hypothesize that tyrosine phosphorylation of these proteins can play a role in the regulation of glycolysis during capacitation. However, neither the Km nor the Vmax of aldolase changed as a function of capacitation when its enzymatic activity was assayed in vitro, suggesting other levels of regulation for aldolase function.  相似文献   

4.
Second messengers are involved in sperm fertilizing potential, as both motility and the acrosome reaction are influenced by cAMP. Moreover, the activity of cyclic nucleotides is implicated in the appearance of tyrosine phosphorylated sperm proteins, which is associated with capacitation in the mammalian spermatozoa. Nevertheless, the involvement of the cAMP/protein kinase A (PK-A) pathway during pig sperm capacitation may be different from that observed in other mammals. The objective of the present study was to clarify the cAMP/PK-A pathway during the capacitation of porcine spermatozoa and to evaluate this impact on the p32 sperm tyrosine phosphoprotein appearance. The presence of p32 was assessed after incubating fresh pig sperm with IBMX/db-cAMP, H-89, a PK-A inhibitor or bistyrphostin, a tyrosine kinase inhibitor, in capacitating (CM) or non-capacitating conditions (NCM) by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. When pig spermatozoa were incubated in CM supplemented with H-89 (50 microM) or bistyrphostin (1.2 microM), capacitation decreased significantly (P < 0.001). The p32 sperm tyrosine phosphoprotein, previously shown to be associated with capacitation of porcine sperm though not necessarily an end point of this phenomenon, was not modulated by IBMX/db-cAMP (100 microM/1 mM), H-89 (50 microM) nor bistyrphostin (1.2 microM). Our results indicate, therefore, that pig sperm are regulated somewhat differently than as described for other mammals, because although the cAMP/PK-A and tyrosine kinase pathways are involved in capacitation, they do not influence the appearance of p32.  相似文献   

5.
Our previous studies demonstrated that osmolality is the key signal in sperm motility activation in Sparus aurata spermatozoa. In particular, we have proposed that the hyper-osmotic shock triggers water efflux from spermatozoa via aquaporins. This water efflux determines the cell volume reduction and, in turn, the rise in the intracellular concentration of ions. This increase could lead to the activation of adenylyl cyclase and of the cAMP-signaling pathway, causing the phosphorylation of sperm proteins and then the initiation of sperm motility. This study confirms the important role of sea bream AQPs (Aqp1a and Aqp10b) in the beginning of sperm motility. In fact, when these proteins are inhibited by HgCl2, the phosphorylation of some proteins (174 kDa protein of head; 147, 97 and 33 kDa proteins of flagella), following the hyper-osmotic shock, was inhibited (totally or partially). However, our results also suggest that more than one transduction pathways could be activated when sea bream spermatozoa were ejaculated in seawater, since numerous proteins showed an HgCl2(AQPs)-independent phosphorylation state after motility activation. The role played by each different signal transduction pathways need to be clarified.  相似文献   

6.
We previously demonstrated that mouse sperm capacitation is accompanied by a time-dependent increase in protein tyrosine phosphorylation that is dependent on the presence of BSA, Ca2+, and NaHCO(3), all three of which are also required for this maturational event. We also demonstrated that activation of protein kinase A (PK-A) is upstream of this capacitation-associated increase in protein tyrosine phosphorylation. BSA is hypothesized to modulate capacitation through the removal of cholesterol from the sperm plasma membrane. In this report, we demonstrate that incubation of mouse sperm medium containing BSA results in a release of cholesterol from the sperm plasma membrane to the medium; release of this sterol does not occur in medium devoid of BSA. We next determined whether cholesterol release leads to changes in protein tyrosine phosphorylation. Blocking the action of BSA by adding exogenous cholesterol-SO-(4) to the BSA-containing medium inhibits the increase in protein tyrosine phosphorylation as well as capacitation. This inhibitory effect is overcome by (1) the addition of increasing concentrations of BSA at a given concentration of cholesterol-SO-(4) and (2) the addition of dibutyryl cAMP plus IBMX. High-density lipoprotein (HDL), another cholesterol binding protein, also supports the capacitation-associated increase in protein tyrosine phosphorylation through a cAMP-dependent pathway, whereas proteins that do not interact with cholesterol have no effect. HDL also supports sperm capacitation, as assessed by fertilization in vitro. Finally, we previously demonstrated that HCO-(3) is necessary for the capacitation-associated increase in protein tyrosine phosphorylation and demonstrate here, by examining the effectiveness of HCO-(3) or BSA addition to sperm on protein tyrosine phosphorylation, that the HCO-(3) effect is downstream of the site of BSA action. Taken together, these data demonstrate that cholesterol release is associated with the activation of a transmembrane signal transduction pathway involving PK-A and protein tyrosine phosphorylation, leading to functional maturation of the sperm.  相似文献   

7.
The maturation of various aspects of sperm function have been demonstrated in monkey and human epididymal sperm, including the ability to undergo the acrosome reaction. The present study aimed to investigate the maturational changes in non‐human primate sperm in the signal transduction mechanisms leading to the acrosome reaction involving cyclic AMP, Ca2+ influx, protein kinase C, and protein tyrosine phosphorylation. Sperm from the caput, corpus, and cauda epididymidis of cynomolgus monkeys were incubated in a complete medium for 2.5 hr, followed by 30 min stimulation with 1 mM dibutyryl cAMP and 1 mM caffeine, 50 μM 1,2‐dioctanoyl‐sn‐glycerol (DOG), and 50 μM Ca2+‐ionophore A23187. Quantitative Western blotting revealed little difference in tyrosine phosphorylated proteins among the caput, corpus, and cauda sperm without stimulation. Incubation with cAMP increased the amount of tyrosine phosphorylated proteins up to 10‐fold in the corpus and cauda sperm, but to a lower extent in the caput sperm. Ca2+‐ionophore attenuated the cAMP stimulation but had no effect on its own. Such responses in tyrosine phosphorylated proteins were in great contrast to the responses in the acrosome reaction, where A23187 was the strongest stimulant, resulting in induction of the reaction in 50 ± 5%, 11 ± 5%, and 8 ± 4% cauda, corpus and caput sperm, respectively (mean ± sem, n = 6). DOG and cAMP in combination induced acrosome reactions in about 10% of viable cells in the cauda and corpus but not caput sperm. Caput sperm responded to cAMP with increases in percentage motility without forward progression whereas cauda sperm displayed marked kinematic changes expected of hyperactivation. Comparisons of responses suggest that the major tyrosine phosphorylated proteins detected are unlikely to be involved immediately in the precipitation of the acrosome reaction, but more related to flagellar motion. Development of signal transduction pathways is part of the epididymal maturational process. Mol. Reprod. Dev. 54:194–202, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Motility and protein phosphorylation have been measured under identical experimental conditions in ejaculated dog sperm lysed with low concentrations of Triton X-100 and reactivated with [gamma-32P]ATP. Cyclic AMP stimulates motility and protein phosphorylation while calcium inhibits motility and the overall incorporation of phosphate into endogenous proteins. Analysis of 32P-labeled sperm proteins on 1- and 2-dimensional polyacrylamide gels demonstrates that an enhanced phosphorylation of a defined number of specific proteins is associated with cAMP-stimulated motility. A major axonemal proteins, namely tubulin, has been tentatively identified as a phosphoprotein subject to regulation by cAMP. The phosphorylation of tubulin is almost completely dependent upon cAMP and is not affected by microM calcium. On the other hand, the cAMP-dependent stimulated phosphorylation of the other sperm proteins still occurs, but in most instances at a reduced rate in the presence of calcium. Two high molecular weight (Mr) phosphoproteins (350,000 and 260,000 daltons) whose phosphorylation states are modified by cAMP and calcium also were identified. It is suggested that 1 or both these proteins may be high Mr subunits of dynein. The phosphorylation of 1 of these proteins is stimulated by cAMP, but not affected by calcium; the other is stimulated by cAMP and inhibited by calcium. Three major cAMP-independent phosphoproteins of Mr 98,000, 43,000 and 26,000 have been identified. The phosphorylation of the 98,000 Mr protein is markedly reduced by micromolar calcium and not restored by cAMP. Using anticalmodulin drugs to inhibit motility, we suggest that the inhibitory effects of calcium on flagellar motility may be mediated in part by calmodulin. We conclude that the regulation of flagellar motility in cAMP and calcium includes mechanisms involving the control of the phosphorylation state of sperm proteins, some of which may be axonemal components.  相似文献   

9.
Changes of protein tyrosine phosphorylation in ejaculated boar sperm incubated in vitro were examined with the use of antiphosphotyrosine antibodies and immunoblotting. The intracellular levels of cAMP were modulated by treatment with various combinations of caffeine, 3-isobutyl-1-methylxanthine (IBMX), and dibutyryl cyclic AMP (dbcAMP), and acrosome reactions (ARs) were induced via treatment with divalent cation ionophore A23187. Proteins of Mr 34, 38, 40, and 44 (p34 . . . p44) were strongly phosphorylated on tyrosine residues in freshly prepared sperm samples and at the same level during all subsequent treatments. Incubation of sperm in vitro for various periods of time induced an increase of tyrosine phosphorylation of p20, p93, and p175. The tyrosine phosphorylation of p93, p175, and several other sperm proteins was up-regulated in a concentration-dependent manner following treatment of the sperm with dbcAMP, caffeine, or IBMX alone, or with combinations of caffeine and IBMX, respectively, with dbcAMP; the tyrosine phosphorylation of p20 was not correlated with treatment of sperm with cAMP-elevating reagents. The percentage of sperm cells undergoing spontaneous ARs was not affected by the manipulation of cAMP levels and was not correlated with protein tyrosine phosphorylation. In contrast, the addition of calcium to the incubation media decreased protein tyrosine phosphorylation and elevated percentage of spontaneous ARs. The induction of ARs with A23187 caused a significant decrease of tyrosine phosphorylation of p93, p175, and p220/230, indicating that dephosphorylation on protein tyrosine residues might be associated with calcium influx during physiological ARs as well. Proteins p93 and p175 were effectively solubilized in greater than 9M urea/1% triton and in SDS sample buffer, but to only a small extent in triton, while p20 was virtually completely extractable with triton. In conjunction with the previously reported isolation of active tyrosine kinase sp42 from triton extracts of noncapacitated boar sperm cells (Berruti and Porzio, 1992: Biochim Biophys Acta 1118:149–154), our results suggest that a cAMP-dependent event is required for tyrosine phosphorylation of triton-insoluble proteins such as p93 and p175. On the other hand, the tyrosine phosphorylation of p20 (and potentially other triton-soluble substrates) might not strictly require such cAMP up-regulation. We discuss the differences in the regulation of cAMP-dependent tyrosine phosphorylation in mouse, human, and boar sperm, and suggest that sensitivity to calcium and distinct basal levels of cyclic nucleotide PDE might correspond to species-specific reproduction strategies in mammals. Mol. Reprod. Dev. 51:304–314, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Purification and properties of sorbitol dehydrogenase from mouse liver   总被引:1,自引:0,他引:1  
1. The sorbitol dehydrogenase (L-iditol: NAD oxidoreductase, EC 1.1.1.14) from mouse liver has been purified to homogeneity. 2. The enzyme has a mol. wt of 140,000 and is composed of four identical subunits of mol. wt 35,000. 3. the purified enzyme catalyses both sorbitol oxidation and fructose reduction. 4. It is specific for NAD+ (NADH) and does not function with NADP+ (NADPH). 5. The Michaelis constants for sorbitol, fructose, NAD+ and NADPH are 1.54 and 154 mM, 58.8 and 15 microM, respectively. 6. The enzyme is SH-group reagent sensitive and is strongly inhibited by 1,10-phenanthroline.  相似文献   

11.
Small amounts of D-sorbitol were extracted from 15 species of brown seaweeds representing four orders, independent of seasonal effects. Sorbitol phosphate was also isolated and identified.  相似文献   

12.
It is generally accepted that incubation with heparin is required to induce capacitation of ejaculated bovine spermatozoa in vitro. The capacitation process implicates many biochemical events, and is correlated with modified sperm motility and the phosphorylation of specific proteins on tyrosine residues. To better understand the molecular basis of heparin-induced capacitation, bovine spermatozoa were incorporated with a radioactive substrate of protein kinases [gamma32P]-ATP, to observe protein phosphorylation dynamics over time. Sperm motion parameters including the percentage of motile spermatozoa, amplitude of lateral head displacement (ALH) and flagellar beat cross frequency (BCF) were assessed to determine whether the protein phosphorylation patterns induced by heparin also promote changes in motility. Capacitation was confirmed using the chlortetracycline fluorescence assay and the appearance of 'pattern B' stained spermatozoa. Evaluation of the different motility parameters during capacitation reveal that heparin has a marked negative effect, over time, on the percentage of motile spermatozoa, consistent with hyperactivation. Indeed, the presence of heparin greatly increases the BCF of bull spermatozoa and induces a significant increase in the ALH compared to spermatozoa incubated without heparin. We detected several sperm proteins that are phosphorylated over time. A 45 kDa protein is the most intensely phosphorylated of the sperm proteins. However, it is visible regardless of the presence of heparin. Interestingly, a second phosphorylated protein of approximately 50 kDa undergoes more intense phosphorylation with heparin than without. In summary, the present study demonstrated that heparin induces physiological changes in several sperm motility parameters including ALH, BCF and the percentage of motile spermatozoa. Heparin also increases the intensity of phosphorylation of a 50 kDa sperm protein. These results suggest that capacitation of bovine spermatozoa and capacitation-associated motility changes may be regulated by a mechanism that includes protein phosphorylation, and that a presently unknown protein kinase is involved.  相似文献   

13.
获能期间精子蛋白的酪氨酸磷酸化   总被引:2,自引:0,他引:2  
周思畅  倪崖  石其贤 《生命科学》2006,18(3):285-289
哺乳动物精了获能是精子与卵子成功受精的前提。蛋白酪氨酸磷酸化对精子获能十分重要。精了获能期蛋白酪氨酸磷酸化程度增高与sAC/cAMP/PKA途径、受体酪氨酸激酶途径和非受体蛋白酪氨酸激酶途径调节有关。获能过程中酪氨酸磷酸化蛋白分布于精子细胞的不同区域,蛋白的酪氨酸磷酸化与精子功能密切相关。  相似文献   

14.
To investigate the activation mechanism of mouse sperm motility, the intact sperm in various activities were further investigated after demembranation. When dry sperm was diluted into sucrose solution, the sperm exhibited low motility with the swimming velocity of 13.5 ± 3.8 μm/s and the beat frequency of 1.5 ± 0.4 Hz. The demembranated sperm were immotile in the reactivation solution lacking cAMP. Meanwhile, when dry sperm was diluted into the solution containing either high concentration of NaCl or Ca2+, they exhibited the beat frequency of about 9 Hz. The demembranated ones exhibited the intermediate motility in the absence of cAMP. When dry sperm were diluted into the sucrose solution containing HCO3, the sperm exhibited a vigorous motility with the swimming velocity of 181.2 ± 10.1 μm/s and the beat frequency of 11.3 ± 1.2 Hz. The demembranated sperm exhibited the high reactivation motility (90%) and flagellar beat frequency (9 Hz) in the absence of cAMP. These values were almost equivalent to those obtained in the demembranated sperm pretreated with sucrose or Ca2+ or NaCl and reactivated in the presence of cAMP. The activation induced by bicarbonate was considered complete in comparison with the activation by Ca2+ or NaCl. It was likely that the activation of mouse sperm motility took multiple states. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Signaling by cAMP-dependent protein kinase (PKA) plays an important role in the regulation of mammalian sperm motility. However, it has not been determined how PKA signaling leads to changes in motility, and specific proteins responsible for these changes have not yet been identified as PKA substrates. Anti-phospho-(Ser/Thr) PKA substrate antibodies detected a sperm protein with a relative molecular weight of 270,000 (p270), which was phosphorylated within 1 min after incubation in a medium supporting capacitation. Phosphorylation of p270 was induced by bicarbonate or a cAMP analog, but was blocked by the PKA inhibitor H-89, indicating that p270 is likely a PKA substrate in sperm. In addition, phosphorylation of p270 was inhibited by stearated peptide st-Ht31, suggesting that p270 is phosphorylated by PKA associated with an A-kinase anchoring protein (AKAP). AKAP4 is the major fibrous sheath protein of mammalian sperm and tethers regulatory subunits of PKA to localize phosphorylation events. Phosphorylation of p270 occurred in sperm lacking AKAP4, suggesting that AKAP4 is not involved directly in the phosphorylation event. Phosphorylated p270 was enriched in fractionated sperm tails and appeared to be present in multiple compartments including a detergent-resistant membrane fraction. PKA phosphorylation of p270 within 1 min of incubation under capacitation conditions suggests that this protein may have an important role in the initial signaling events that lead to the activation and subsequent hyperactivation of sperm motility.  相似文献   

16.
Androhep Plus, a long-term extender (up to 7 days) and Beltsville Thawing Solution (BTS), a short-term extender (up to 3 days), are commonly used for liquid storage of porcine semen. To test the hypothesis that modifications in sperm viability, motility, chlortetracycline (CTC) fluorescence patterns, and protein tyrosine phosphorylation occur during semen storage in extenders, we compared these end points at different periods of storage in either Androhep Plus or BTS. Sperm from five boars were assessed daily over 12 days of storage (n = 5 ejaculates from different boars). Viability was not different (P < 0.05 between extenders, except on Day 2, when Androhep Plus maintained better viability. Differences in the percentage of motile (total) sperm due to extender were evident on Days 2, 4, 5, and 6, when Androhep Plus was superior to BTS (P < 0.05). The percentages of progressively motile sperm also differed, with Androhep Plus supporting higher rates on Days 2, 4, 5, 7, 8, 9, 10, and 11 (P < 0.05). The CTC fluorescence pattern distribution differed due to extender as early as Day 2; storage in Androhep Plus induced higher levels of pattern B sperm (P < 0.05) than storage in BTS. A tyrosine-phosphorylated protein of Mr 21,000 appeared after 10 days in sperm incubated in BTS, and was identified as a phospholipid hydroperoxide glutathione peroxidase. Therefore, modifications in viability, motility, CTC fluorescence patterns, and sperm protein tyrosine phosphorylation were apparent during sperm storage in extenders; these may affect the fertilizing capacity of the semen.  相似文献   

17.
Using a selective inhibitor of cAMP-dependent protein kinase, N-[2(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8), the requirement for cAMP-dependent phosphoproteins in the initiation of dog sperm flagellar motility was examined. H-8 inhibited motility of live as well as reactivated sperm in a dose-dependent manner. The half-maximal inhibition of reactivated motility (32 microM) paralleled the inhibition of pure catalytic subunit of cAMP-dependent protein kinase (50 microM) measured under the same conditions. H-8 inhibited protein phosphorylation both in whole models and in isolated Nonidet P-40 (NP-40) extracts of sperm. Axokinin, the heat-stable NP-40-soluble protein whose phosphorylation is required for flagellar reactivation, represented 97% of the de novo phosphate incorporation in the NP-40 extract after stimulation by cAMP. 500 microM H-8 inhibited axokinin phosphorylation by 87%. When sperm were reactivated in the presence of up to 5 mM H-8 with NP-40 extract that had been prephosphorylated with cAMP-dependent protein kinase, then neither cAMP nor cAMP-dependent protein kinase activity was required for full flagellar reactivation. If sperm were rendered completely immotile by pretreatment with H-8, then the resulting model remained immotile in the continued presence of H-8 unless prephosphorylated axokinin was added. These results suggest that phosphorylated axokinin is not only required for flagellar reactivation but is sufficient as well.  相似文献   

18.
There is substantial evidence that cAMP-dependent phosphorylation is involved in the activation of motility of spermatozoa as they are released from storage in the male reproductive tract. This evidence includes observations that in vivo activation of motility can be inhibited by protein kinase inhibitors, can be reversed by protein phosphatase treatment of demembranated spermatozoa, and is associated with phosphorylation of sperm proteins, and observations that spermatozoa that have not been activated in vivo can be activated in vitro by cAMP-dependent phosphorylation. Activation in vivo can often be triggered by conditions that increase intracellular pH, but the relevance of this to in vivo activation under natural conditions and the steps between pH increase and cAMP increase have not been fully established. The relationships between changes in the protein substrates for cAMP-dependent phosphorylation and changes in axonemal function are still unknown. Sperm chemotaxis to egg secretions is widespread; in the sea urchin Arbacia, the egg jelly peptide resact has been identified as a chemoattractant. Response to chemoattractants involves changes in asymmetry of flagellar bending waves, and similar changes in asymmetry can be produced in vitro by increases in [Ca++]. Temporal changes in resact receptor occupancy might lead to transient changes in intracellular [Ca++] and the asymmetry of flagellar bending, but many links in this hypothetical sequence remain to be established. Both of these signalling systems offer immediate opportunities for investigations of biochemical pathways leading to easily assayable biological responses. However, complications resulting from interactions between these two systems need to be considered.  相似文献   

19.
Ejaculated sperm are unable to fertilize an egg until they undergo capacitation. Capacitation results in the acquisition of hyperactivated motility, changes in the properties of the plasma membrane, including changes in proteins and glycoproteins, and acquisition of the ability to undergo the acrosome reaction. In all mammalian species examined, capacitation requires removal of cholesterol from the plasma membrane and the presence of extracellular Ca2+ and HCO3-. We designed experiments to elucidate the conditions required for in vitro capacitation of rat spermatozoa and the effects of Crisp-1, an epididymal secretory protein, on capacitation. Protein tyrosine phosphorylation, a hallmark of capacitation in sperm of other species, occurs during 5 h of in vitro incubation, and this phosphorylation is dependent upon HCO3-, Ca2+, and the removal of cholesterol from the membrane. Crisp-1, which is added to the sperm surface in the epididymis in vivo, is lost during capacitation, and addition of exogenous Crisp-1 to the incubation medium inhibits tyrosine phosphorylation in a dose-dependent manner, thus inhibiting capacitation and ultimately the acrosome reaction. Inhibition of capacitation by Crisp-1 occurs upstream of the production of cAMP by the sperm.  相似文献   

20.
The relation between the activity of the sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) and the motility of sperms was investigated. It was found that the mean value of GAPDS activity in sperm samples with low motility is 2.5–3-fold lower than that in samples with high motility. Sperm motility was shown to diminish in the presence of superoxide anion, hydroxyl radical, and hydrogen peroxide. The decrease in sperm motility in the presence of hydrogen peroxide was proportional to the concentration of the oxidant and correlated with the decrease in GAPDS activity (r = 0.96). Based on the literature data on the importance of GAPDS for the motility of sperms together with the presented observations, it was concluded that the decrease in the sperm motility in the presence of reactive oxygen species is due to the oxidation of GAPDS and inhibition of glycolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号