首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桑白皮中抗人爱滋病病毒(HIV)成分研究   总被引:9,自引:0,他引:9  
从中药桑白皮(MorusalbaL.)的根皮中分离到6个成分,它们是:morusin(1),mulberrofuranD(2),kuwanonH(3),mulberroforanK(4),kuwanonG(5),mulberrofuranG(6);并制备了它们的乙醚化合物和葡萄糖成;还测定了这些化合物的体外抗人爱滋病病毒(HIV)活性和对人淋巴细胞的细胞毒活性,发现其中黄酮morusin,kuwanonH和morusin4'-glucoside具有一定的抗HIV活性。  相似文献   

2.
A new methylated flavonol, 5,7,2',4'-tetrahydroxy-3-methoxyflavone (1), had been isolated from the methanol extract of the wood of Morus australis, along with nine known compounds, kuwanon C (2), morusin (3), morachalcone A (4), oxyresveratrol (5), 4'-(2-methyl-2-buten-4-yl)oxyresveratrol (6), moracins M (7) and C (8), alboctalol (9), and macrourin B (10). The structures of these compounds were determined based on spectral evidence, including UV, IR, NMR, and mass spectra. Cytotoxic properties of compounds 1-10 were evaluated against murine leukemia P-388 cells. The prenylated stilbene 6 and 2-arylbenzofuran 8, and morusin (3) were found to have strong cytotoxic effects with IC50 values of 6.9, 8.7, and 10.1 microM, respectively.  相似文献   

3.
Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB.  相似文献   

4.
The aim of the present study was to evaluate the antinociceptive potential of the acetylenic thiophene and furan derivatives: 3-(furan-2-il) prop-2-yn-1-ol 1, 1-(thiofen-2-il) pent-1yn-3-ol 2 and 4-(thiofen-2-il)-2-metilbut-3-yn-2-ol 3 on three different pain models in mice. The pain models evaluated were the acetic acid-induced writhing, capsaicin-induced pain and the tail immersion test. The possible mechanisms involved in the antinociceptive effect of these compounds were also investigated. Thus, the acetylenic thiophene and furan derivatives presented antinociceptive effect in the pain tests caused by chemical agents. Statistical analysis showed that compounds 1 and 3 increased the latency for tail withdrawal in the tail immersion test (phasic pain). Besides, the role of the opioidergic, muscarinic cholinergic and dopaminergic systems in the acetic acid-induced writhing was examined. The antinociceptive effect of compounds 2 and 3 was prevented by pretreatment with naloxone (1 mg/kg, s.c), but not by atropine (5 mg/kg, s.c) or metoclopramide (1 mg/kg, s.c). Neither naloxone nor metoclopramide prevented the antinociceptive effect caused by compound 1, while the pretreatment with atropine antagonized the antinociceptive action of this compound. The compounds 1-3 used in this study did not reveal any motor impairment to mice in the open field. The results suggest that compounds 2 and 3 induced antinociception in the abdominal writhing test and that their effects are mediated by opiodergic receptors, while the antinociceptive effect of compound 1 may involve muscarinic cholinergic receptors.  相似文献   

5.
6.
M Xu  V K Kontinen  P Panula  E Kalso 《Peptides》1999,20(9):1071-1077
The antinociceptive effects of intrathecal (IT) (1DMe)NPYF were studied in adult Sprague-Dawley rats. (1DMe)NPYF produced dose-dependent antinociception that was reduced by subcutaneous injection of naloxone. (1DMe)NPYF (0.5 nmol) also potentiated the antinociceptive effects of intrathecal morphine 7.8 nmol. This suggests that the antinociceptive effects of (1DMe)NPYF are partially mediated by opioid receptor activation. In carrageenan inflammation, 5-10 nmol of (1DMe)NPYF was effective against both thermal hyperalgesia and mechanical allodynia. In the neuropathic pain model, the lowest dose tested (0.5 nmol) showed antiallodynic effects against cold allodynia. The results suggest a potential role for (1DMe)NPYF in the treatment of pain including neuropathic pain.  相似文献   

7.
In this study, we examined the antinociceptive effect of beta-lactotensin, a neurotensin agonist that has been isolated from the chymotrypsin digest of beta-lactoglobulin as an ileum-contracting peptide. Beta-lactotensin showed naloxone-insensitive antinociceptive activity by the tail-pinch test after i.c.v. (200 nmol/mouse) or s.c. (300 mg/kg) administration in ddY mice. Tolerance was not developed to antinociception induced by beta-lactotensin after repeated s.c. administration for 5 days. The antinociceptive activity of beta-lactotensin was blocked by treatment with the neurotensin NT2 receptor antisense ODN, while treatment with the NT1 receptor antisense ODN had no effect. The antinociceptive activity was also blocked by a dopamine D1 receptor antagonist, SCH23390 (1 microg/mouse, i.c.v.), while a D2 receptor antagonist, raclopride (0.5 microg/mouse, i.c.v.), did not block the activity. These results indicate that the antinociceptive activity of beta-lactotensin is mediated by NT2 and D1 receptors.  相似文献   

8.
Chemical or electrical stimulation of the dorsal portion of the midbrain periaqueductal gray (dPAG) produces anxiogenic and antinociceptive effects. In rats, chemical stimulation of dPAG by local infusion of the neuropeptide corticotropin-releasing factor (CRF) provokes anxiogenic effects in the elevated plus-maze test (EPM). CRF also produces antinociception when injected intracerebroventricularly in rats, however it remains unclear whether this response is also observed following CRF injection into the dPAG in mice. Yet, given that there are CRF1 and CRF2 receptor subtypes within the PAG, it is important to show in which receptor subtypes CRF exert its anxiogenic and antinociceptive effects in the dPAG. Here, we investigated the role of these receptors in the anxiogenic (assessed in the EPM) and antinociceptive (assessed by the Formalin test: 2.5% formalin injection into the right hind paw) effects following intra-dPAG infusion of CRF in mice. The results show that intra-dPAG injections of CRF (75 pmol/0.1 μl and 150 pmol/0.2 μl) produced dose-dependent anxiogenic and antinociceptive effects. In addition, local infusion of NBI 27914 (5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)-aminopyridine; 2 nmol/0.2 μl), a CRF1 receptor antagonist, completely blocked both the anxiogenic and antinociceptive effects induced by local infusion of CRF, while that of antisauvagine 30 (ASV30; 1 nmol/0.2 μl), a CRF2 receptor antagonist, did not alter the CRF effects. Present results are suggestive that CRF1 (but not CRF2) receptors play a crucial role in the anxiogenic and antinociceptive effects induced by CRF in the dPAG in mice.  相似文献   

9.
《Life sciences》1995,56(15):PL285-PL290
The mechanism of the antinociceptive effect of buprenorphine was assessed by administering selective μ-, μ1-, δ- and κ-opioid receptor antagonists in mice. Intraperitoneal administration of buprenorphine, at doses of 0.3 to 3 mg/kg, produced dose-dependent antinociception in the tail-flick test. The antinociceptive activity of buprenorphine did not result from the activation of κ- or δ-opioid receptors, since treatment with either nor-binaltorphimine, a selective κ-opioid receptor antagonist, or naltrindole, a selective δ-opioid receptor antagonist, was completely ineffective in blocking buprenorphine-induced antinociception. However, the antinociceptive effect of buprenorphine was significantly antagonized by β-funaltrexamine, a selective μ-opioid receptor antagonist. Moreover, selective μ1-opioid receptor antagonists, naloxonazine and naltrexonazine, also significantly antagonized the antinociceptive effect of buprenorphine. Co-administration of κ- and δ-opioid receptor antagonists with the μ-opioid receptor antagonists had no significant effect on the antagonistic profiles of the μ-opioid receptor antagonists on the antinociceptive effect of buprenorphine. These results suggest that buprenorphine acts selectively at μ1-opioid receptors to induce antinociceptive effects in mice.  相似文献   

10.
The antinociceptive mechanisms of the selective mu-opioid receptor agonists [D-Ala2,NMePhe4,Gly(ol)5]enkephalin (DAMGO), H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA) or H-Tyr-D-Arg-Phe-beta-Ala-NH2 (TAPA-NH2) against substance P (SP)- or capsaicin-elicited nociceptive behaviors was investigated in mice. DAMGO, TAPA or TAPA-NH2 given intrathecally inhibited the nociceptive behaviors elicited by intrathecally administered SP or capsaicin, and these antinociceptive effects were completely eliminated by intrathecal co-administration with D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective mu-opioid receptor antagonist. Pretreatment subcutaneously with naloxonazine, a selective mu1-opioid receptor antagonist, partially attenuated the antinociceptive effect of TAPA-NH2, but not DAMGO and TAPA, against SP. However, the antinociception induced by TAPA, but not DAMGO and TAPA-NH2, against capsaicin was significantly inhibited by naloxonazine. On the other hand, co-administration intrathecally with Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a selective mu2-opioid receptor antagonist, significantly attenuated the antinociceptive effects of DAMGO, but not TAPA and TAPA-NH2, against capsaicin, while the antinociceptions induced by three opioid peptides against SP were significantly inhibited by D-Pro2-Tyr-W-MIF-1. These results suggest that differential inhibitory mechanisms on pre- and postsynaptic sites in the spinal cord contribute to the antinociceptive effects of the three mu-opioid peptides.  相似文献   

11.
The aim of this study was to examine the antinociceptive potential of leaves of Ixora coccinea (family: Rubeaceae). One of four doses (500, 750, 1000 or 1500 mg/kg, n = 8/dose) of aqueous leaf extract (ALE) or 1 ml of distilled water was orally administered to male rats and antinociceptive activity was ascertained using three models ofnociception (tail flick, hot plate and formalin tests). The results showed that ALE possesses considerable antinociceptive activity (when evaluated in hot plate and formalin test but not in tail flick test). The antinociceptive activity of the ALE had a rapid onset (within 1h) and a fairly long duration of action (up to 5 h) with a peak effect at 3 h. Further, the antinociceptive activity was dose-dependent and was not associated with harmful side-effects or toxicity even following subchronic administration. The antinociceptive action was mediated centrally at the supraspinal level mainly via dopaminergic mechanism. In addition, it is likely that antioxidant activity of the ALE could have played an auxiliary role in inducing antinociception. Dopaminergic and antioxidative activities of ALE could arise, respectively, from its quaternary base alkaloid and flavonoid constituents.  相似文献   

12.
Rotundifolone, a monoterpene isolated from the essential oil of the leaves of Mentha x villosa, is a constituent of several essential oils and known to have antinociceptive activity. Our recent study demonstrated that the analogues of rotundifolone showed also a significant antinociceptive effect. In the present report, to investigate the correlation between the structure and antinociceptive activity, rotundifolone and its analogues were evaluated in the acetic acid-induced writhing test in mice. All compounds showed to be more antinociceptive than rotundifolone against the pain response induced by acetic acid. Comparing the antinociceptive effect of rotundifolone with limonene oxide and (+)-pulegone, the results demonstrated that the epoxide group contributes as much as the ketone group to the antinociceptive activity of rotundifolone. Similarly, pulegone oxide and carvone epoxide were more antinociceptive than rotundifolone, thereby suggesting that the position of the functional group on the ring also influences the antinociceptive activity. (-)-Carvone produced maximal inhibition of the writhing response and was slightly more active than (+)-carvone. The study showed that by appropriate structural modification it may be possible to develop novel antinociceptive agents.  相似文献   

13.
The experiments on Wistar rats showed that microinjection of C-terminal fragment of substance P-CP5-11 (1 microgram) into one of the antinociceptive system structure--dorsal raphe nucleus, caused a prolonged (24 hours of observation) analgetic effect by the hot plate test. Neuronal activity of dorsal raphe nucleus simultaneously enhanced. The CP5-11 antinociceptive activity was higher than the CP1-11 one. The conclusion is that CP1-11 and in particular its C-terminal fragment CP5-11 play a role in activation of antinociceptive system.  相似文献   

14.
Yang J  Liang JY  Zhang XY  Qiu PY  Pan YJ  Li P  Zhang J  Hao F  Wang DX  Yan FL 《Peptides》2011,32(5):1042-1046
Our pervious study has demonstrated that the hypothalamic supraoptic nucleus (SON) plays a role in pain modulation. Oxytocin (OXT) and arginine vasopressin (AVP) are the important hormones synthesized and secreted by the SON. The experiment was designed to investigate which hormone was relating with the antinociceptive role of the SON in the rat. The results showed that (1) microinjection of l-glutamate sodium into the SON increased OXT and AVP concentrations in the SON perfusion liquid, (2) pain stimulation induces OXT, but not AVP release in the SON, and (3) intraventricular injection (pre-treatment) with OXT antiserum could inhibit the pain threshold increase induced by SON injection of l-glutamate sodium, but administration of AVP antiserum did not influence the antinociceptive role of SON stimulation. The data suggested that the antinociceptive role of the SON relates to OXT rather than AVP.  相似文献   

15.
The experiments were carried out on white mice whose brain was irradiated transcranially with laser light in infrared range. Exposure to irradiation was 20 min. In one group of animals only laser light was used, in others laser was combined with morphine (3mg/kg), clonidine (0.5 mg/kg), and diazepam (1 mg/kg) injected intraperitoneally. The nociceptive reactions were studied with the help of "tail-flick" and "hot-plate" tests. It was found that laser light did not modify significantly the results of both tests. Moreover, it didn't influence the antinociceptive properties of morphine, clonidine and diazepam in the "hot-plate" test. In the "tail-flick" test laser light did not affect the action of clonidine, but provided naloxone-independent antinociceptive reaction with diazepam and increased the antinociceptive effect of morphine. Laser irradiation of the brain did not cause any significant morphological changes. These results suggest the possibility of modulating antinociceptive actions of morphine and diazepam by laser irradiation of the brain.  相似文献   

16.
6-Prenylapigenin (1) and 8-prenylapegenin (2) were semi-synthesized from apigenin by nuclear prenylation. Morusin (3) was isolated from the root bark of Morus alba L. The microbial transformation studies of these three bioactive prenylated apigenin derivatives were performed using eighteen cell cultures in order to select microorganisms capable of transforming them. It was identified that Mucor hiemalis (KCTC 26779) showed the ability to metabolize the parent compounds (1–3) into three new (46) and one known (7) glucosylated derivatives with high efficiency. Their structures were established as 6-prenylapigenin 7-O-β-d-glucopyranoside (4), 8-prenylapigenin 7-O-β-d-glucopyranoside (5), morusin 5-O-β-d-glucopyranoside (6), and morusin 4′-O-β-d-glucopyranoside (7) by the spectroscopic methods.  相似文献   

17.
T Ochi  T Goto 《Life sciences》2001,69(19):2257-2264
In this study, we investigated the role of descending monoaminergic systems in the antinociceptive activity of FR140423, 3-(difluoromethyl)-1-(4-methoxyphenyl)-5-[4-(methyl sulfinyl)phenyl]pyrazole, by using the tail-pinch test in mice and various monoamine depletors. The antinociceptive effects of FR140423 given p.o. and i.t. with ED50 values of 22 mg/kg and 3.5 microg/mouse, respectively, in the tail-pinch test were antagonized by reserpine, 6-hydroxydopamine plus nomifensine, and p-chlorophenylalanine treatment, whereas the antinociceptive action of morphine in this assay was attenuated by reserpine and 6-hydroxydopamine plus nomifensine but not by p-chlorophenylalanine treatment. These results suggest that both descending noradrenergic and serotonergic systems are involved in the antinociceptive activity of spinally and systemically administered FR140423 against mechanical noxious stimuli. The mechanisms underlying the suppressive action of FR140423 on the nociceptive response may differ from those of morphine in mice.  相似文献   

18.
Hao S  Takahata O  Iwasaki H 《Life sciences》2000,66(15):PL195-PL204
It is known that spinal morphine produces antinociception that is modulated by alpha 2-adrenoceptors. Endomorphin-1, a newly-isolated endogenous opioid ligand, shows the greatest selectivity and affinity for the mu-opiate receptor of any endogenous substance found to date and may serve as a natural ligand for the mu-opiate receptor. We examined the antinociceptive effects of endomorphin-1 administered intrathecally (i.t.) in the rat tail flick, tail pressure and formalin tests. Intrathecal endomorphin-1 produced dose-dependent antinociceptive effects in the three tests. ED50 (CI95) values for antinociception of i.t. endomorphin-1 in the tail flick test and tail pressure test were 1.9 (0.96-3.76) nmol and 1.8 (0.8-4.2) nmol, respectively. ED50 (CI95) values for phase 1 and phase 2 in the formalin test were 12.5 (7.9-19.8) nmol and 17.5 (10.2-30) nmol, respectively. Pretreatment with i.t. beta-funaltrexamine (a mu-opioid receptor selective antagonist) significantly antagonized the antinociceptive effects of endomorphin-1 in the three tests. Beta-funaltrexamine alone had not effects on the three tests. The antinociceptive effects of endomorphin-1 were also antagonized by i.t. yohimbine (an alpha 2-adrenoceptor selective antagonist). The combination of ineffective doses of i.t. clonidine (an alpha 2-adrenoceptor agonist) and endomorphin-1 produced a significant antinociception in the three tests. The results showed that intrathecal endomorphin-1 produced antinociception in a dose-dependent manner in the rat tail flick, tail pressure and formalin tests, which was mediated by spinal mu-opioid receptors and modulated by alpha 2-adrenoceptors.  相似文献   

19.
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors.Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.  相似文献   

20.
The effect of intrathecal injections of dynorphin1-8 (DYN1-8), dynorphin1-13 (DYN1-13), and a putative kappa agonist, U50,488 was tested in the rat tail-flick test. DYN1-8 and DYN1-13 (5, 10, 20 micrograms) produced a dose-related biphasic antinociceptive response consisting of an initial and a delayed response. Injection of U50,488 (20, 40 60 micrograms) produced a monophasic response. The antinociceptive effect of DYN1-8 (5, 10, 20 micrograms) and DYN1-13 (20 micrograms), was present 24 h postintrathecal injection. Pretreatment with systemic naloxone (2 mg/kg s.c.) attenuated the delayed response, but not the initial response induced by DYN1-8 and DYN1-13. The initial response was attenuated by pretreatment with intrathecal naloxone at a dose of 0.5 and 2.0 micrograms. The antinociceptive effect of U50,488 (20, 60 micrograms) was not affected by pretreatment with 2.0 micrograms intrathecal naloxone, but was significantly reduced by 4 micrograms of the antagonist. Both DYN1-8 and DYN1-13 (5 micrograms) augmented the antinociceptive effect of intrathecally administered morphine (5, 10 micrograms). Intrathecal injection of DYN1-8 (5, 10, 20 micrograms), DYN1-13 (5 micrograms), and morphine (10 micrograms) reduced the spontaneous output of urine measured at 2 and 24 h postintrathecal injection. A similar injection of U50,488 (20 micrograms) had no significant action on the urinary output. The results show that long and short dynorphin fragments have a comparable activity and the spinal antinociceptive actions of dynorphin are sensitive to low doses of intrathecal naloxone. The activity profile of spinally administered dynorphins differs from that of the kappa agonist U50,488.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号