首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Female C3H/Bi mice develop spontaneous viral mammary carcinoma which can metastasize to the lungs. Two hundred and forty tumoral mice were either exposed to a toro?dal pulsed magnetic field, 12 Hz, 100 Hz or 460 Hz in frequency or used as controls. The exposure was mainly done 10 min. a day, 3 days a week, or 30 minutes once a week from about 2 to 3 weeks after the appearance of the tumors until death. In comparison with the controls, the exposed mice showed lighter spleens and lungs; this last observation could mean fewer pulmonary metastases. The weight of the tumors has been found lighter for 460 Hz MF, not changed for 100 Hz MF, heavier for 12 Hz MF, but lifespans were not altered by the exposure.  相似文献   

2.
A. Bellossi 《Biotherapy》1992,4(4):277-283
AKR mice were exposed to a 6 mT, 12 Hz or 460 Hz pulsed magnetic field (PMF) 30 minutes twice a week. The exposure took placein utero and/or during the life span for four consecutive generations. The adult mice exposed to the 460 Hz PMF only after the birth time were lighter than the controls; for the two frequencies the decrease in weight with the ageing was less pronounced than in the controls. When the exposure took placein utero the exposed new-born mice were heavier than the controls. The difference in weight progressively disappeared when the mice were exposed to the 12 Hz PMF, persisted when the mice were exposed to the 460 Hz PMF.  相似文献   

3.
The effect exerted on the ascorbate system due to the exposure of mice to the constant magnetic field associated with MRI methods has been examined. The mice were exposed to magnetic field 1.00 T strength for 0.2 h, 3 h, or 24 h. The ascorbyl free radical in tissues was measured in vitro, which in vivo corresponds to the level of ascorbic acid. Only in a group of mice where the ascorbyl free radical was measured 24 h following their exposure to magnetic field 1.00 T strength for 24 hours, was the level of free radical in tissues significantly decreased.  相似文献   

4.
Abstract

The effect of square pulsed magnetic signals on the growth of Dickeya solani bacterium was studied. Three different frequency windows in a range up to 50?Hz were selected for exposure to determine the frequencies causing maximum bacteriostatic and bactericidal effects. Furthermore, the cellular morphological changes under most inhibitory conditions were studied and bacterial pathogenicity was examined. The obtained data showed the most inhibitory frequency that caused an inhibition by 65% and delayed the cellular growth by more than 8?h is 5?Hz. The morphological studies of exposed bacterium cells showed cellular abnormalities and fragmentations and loss of membrane outer surface charges. The pathogenicity test exposed a significant decrease in the infection reached 68%. In conclusion, the present study developed better disease strategy for controlling the bacterium of D. solani in an efficient and safe manner. Moreover, the applicability of using pulsed electromagnetic signals may have a good role in bacterial inhibition.  相似文献   

5.
Development of chicken embryos in a pulsed magnetic field   总被引:3,自引:0,他引:3  
Six independent experiments of common design were performed in laboratories in Canada, Spain, Sweden, and the United States of America. Fertilized eggs of domestic chickens were incubated as controls or in a pulsed magnetic field (PMF); embryos were then examined for developmental anomalies. Identical equipment in each laboratory consisted of two incubators, each containing a Helmholtz coil and electronic devices to develop, control, and monitor the pulsed field and to monitor temperature, relative humidity, and vibrations. A unipolar, pulsed, magnetic field (500-microseconds pulse duration, 100 pulses per s, 1-microT peak density, and 2-microseconds rise and fall time) was applied to experimental eggs during 48 h of incubation. In each laboratory, ten eggs were simultaneously sham exposed in a control incubator (pulse generator not activated) while the PMF was applied to ten eggs in the other incubator. The procedure was repeated ten times in each laboratory, and incubators were alternately used as a control device or as an active source of the PMF. After a 48-h exposure, the eggs were evaluated for fertility. All embryos were then assayed in the blind for development, morphology, and stage of maturity. In five of six laboratories, more exposed embryos exhibited structural anomalies than did controls, although putatively significant differences were observed in only two laboratories (two-tailed Ps of .03 and less than .001), and the significance of the difference in a third laboratory was only marginal (two-tailed P = .08). When the data from all six laboratories are pooled, the difference in incidence of abnormalities in PMF-exposed embryos (approximately 25 percent) and that of controls (approximately 19 percent), although small, is highly significant, as is the interaction between incidence of abnormalities and laboratory site (both Ps less than .001). The factor or factors responsible for the marked variability of inter-laboratory differences are unknown.  相似文献   

6.
The focus of the study was on the reaction of by the haemopoietic system of mice subjected to impulse magnetic field. The source of the impulse magnetic field was the Shakhparonov's generator. The animals used in the experiments were mice of two strains--CBA, C57B1/6 and white non-inbred mice. These animals were exposed to impulse magnetic field during 1, 3 and 7 days. Animals were examined twice: immediately after the termination of exposure and 24 h later. The following effects were observed in the course of the experiments: an increase in the number of bone marrow cells right after the exposure termination; an increase in the number of proliferation pool cells with the increase in their mitotic activity; 1 day after the exposure termination the number of bone marrow cells was restored to the initial values, or even it decreased; the above listed bone marrow changes led to the increase in the number of peripheral blood leucocytes in 1 day after the termination of exposure. The increase of leukocyte counts was not accompanied with changes in peripheral blood cell composition. It was suggested that exposure to impulse magnetic field increases the rates of cell cycle, the cell differentiation and the maturation.  相似文献   

7.
Female mice post weaning were exposed to 20 kHz sawtooth electric and magnetic fields (EMF) with 6.25 microT peak intensity for 6 weeks. Estrous cycles were checked using vaginal smears over the last 10 days of the experimental period. The vaginal smears from EMF-exposed mice revealed an increase in the frequency of one or two phases persisting. The number of estrous cycles less than 1 was more in the EMF-exposed group than in the sham control group. Furthermore, in the EMF-exposed group, the duration of proestrous and metestrous stages of the estrous cycle was significantly increased compared with the control group. In conclusion, our results suggest that exposure to 20 kHz sawtooth EMF may affect normal cycling of the estrous cycle by disrupting the female reproductive endocrine physiology. We should not disregard the possible adverse reproductive effect of the 20 kHz sawtooth EMF generated under the occupational exposure situation in females.  相似文献   

8.
9.
Cells from the T-lymphoblastoid cell line, CCRF-CEM, have been exposed in vitro to a quasirectangular, asymmetric electromagnetic field pulsed at 72 Hz at 37 degrees for periods of 30 min to 24 h. RNA synthesis, assessed by incorporation of 3H-uridine, increased (relative to control cells) 2-fold after 30 min in exposed cells and achieved its greatest increase of 3.2-fold relative to controls after 2 h exposure. Increased precursor incorporation was observed at all subsequent exposure times up to 24 h. Synthesis of mRNA was similar, but not identical to that observed with total cellular RNA. Additionally, protein synthesis, determined by incorporation of radioactive precursor into acid-precipitable material, was increased 2.8-fold, compared to controls, after 2 h exposure. Longer exposure times resulted in an exponential decrease in precursor incorporation to 1.1-times control levels after 24 h. Using a dye reduction assay, mitochondrial activity was also found to be increased over a 24 h exposure period. No effect of electromagnetic field exposure was found on cellular synthesis of DNA. These data are generally consistent with other reports documenting effects of electromagnetic field exposure on macromolecular synthesis in vitro.  相似文献   

10.
11.
Aims and Background: Tumor diseases cause 20% of deaths in Europe and they are the second most common cause of death and morbidity after cardiovascular diseases. Thus, tumor cells are target of many therapeutic strategies and tumor research is focused on searching more efficient and specific drugs as well as new therapeutic approaches. One of the areas of tumor research is an issue of external fields. In our work, we tested influence of a pulsed electromagnetic field (PEMF) and a hypothetic field of the pulsed vector magnetic potential (PVMP) on the growth of tumor cells; and further the possible growth inhibition effect of the PVMP. Methods: Both unipolar and bipolar PEMF fields of 5?mT and PVMP fields of 0?mT at frequencies of 15?Hz, 125?Hz and 625?Hz were tested on cancer cell lines derived from various types of tumors: CEM/C2 (acute lymphoblastic leukemia), SU-DHL-4 (B-cell lymphoma), COLO-320DM (colorectal adenocarcinoma), MDA-BM-468 (breast adenocarcinoma), and ZR-75-1 (ductal carcinoma). Cell morphology was observed, proliferation activity using WST assay was measured and simultaneous proportion of live, early apoptotic and dead cells was detected using flow cytometry. Results: A PEMF of 125?Hz and 625?Hz for 24?h–48?h increased proliferation activity in the 2 types of cancer cell lines used, i.e. COLO-320DM and ZR-75-1. In contrast, any of employed methods did not confirm a significant inhibitory effect of hypothetic PVMP field on tumor cells.  相似文献   

12.
Continuing evidence suggests that extremely low frequency magnetic fields (ELF MFs) can affect animal and human behavior. We have previously demonstrated that after a 15 min exposure to a pulsed ELF MF, with most power at frequencies between 0 and 500 Hz, human brain electrical activity is affected as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here, we report that a pulsed ELF MF affects the human EEG during the exposure period. Twenty subjects (10 males; 10 females) received both a magnetic field and a sham session of 15 min in a counterbalanced design. Analysis of variance (ANOVA) revealed that alpha activity was significantly lower over the occipital electrodes (O1, Oz, O2) [F(1,16) = 5.376, P < .01, eta2 = 0.418] after the first 5 min of magnetic field exposure and was found to be related to the order of exposure (MF-sham vs. sham-MF). This decrease in alpha activity was no longer significant in the 1st min post-exposure, compared to sham (P > .05). This study is among the first to assess EEG frequency changes during a weak (+/-200 microTpk), pulsed ELF MF exposure.  相似文献   

13.
Using the radioactive indication method, it was shown that pulse magnetic field (magnetic induction value in the pulse 8.5 mT, frequency 50 Hz, square pulse length 0.02 sec) increased corneal permiability and drug accumulation within some tissue structures and in the refractory eye media.  相似文献   

14.
Effects of electromagnetic fields (EMFs) on human cell lines were described in numerous studies, but still many questions remain unanswered. Our experiment was designed with the aim of studying the effects of EMFs on the metabolic activity of chondrocytes in vitro. Human chondrocyte in vitro cultures, cultured in medium supplemented with 20 % fetal calf serum, were exposed to static magnetic field (SMF) (intensity of 0.6 T) and pulsed electromagnetic fields (PEMF) (21.2 MHz period of 15 ms, burst duration of 2 ms, amplification 3 dBm (0.1 V) and maximum output of 250 W) continually for 72 h. After the exposure, viability was determined using the MTT test and compared with a non-exposed control culture. As compared to the control sample the exposure to SMF resulted in a statistically significant increase (p 0.001) in viability. However, the increase of viability after PEMF exposure was not significant. This could be due to the frequency dependent effect on human cells. The experiments demonstrated that magnetic fields, using the above parameters, have a positive effect on the viability of human chondrocytes cultured in vitro.  相似文献   

15.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

16.
Directed and enhanced neurite growth with pulsed magnetic field stimulation   总被引:6,自引:0,他引:6  
Pulsed magnetic field (PMF) stimulation was applied to mammalian neurons in vitro to influence axonal growth and to determine whether induced current would direct and enhance neurite growth in the direction of the current. Two coils were constructed from individual sheets of copper folded into a square coil. Each coil was placed in a separate water-jacketed incubator. One was energized by a waveform generator driving a power amplifier, the other was not energized. Whole dorsal root ganglia (DRG) explant cultures from 15-day Sprague-Dawley rat embryos were established in supplemented media plus nerve growth factor (NGF) at concentrations of 0-100 ng/mL on a collagen-laminin substrate. Dishes were placed at the center of the top and bottom of both coils, so that the DRG were adjacent to the current flowing in the coil. After an initial 12 h allowing DRG attachment to the substrate floor, one coil was energized for 18 h, followed by a postexposure period of 18 h. Total incubation time was 48 h for all DRG cultures. At termination, DRG were histochemically stained for visualization and quantitative analysis of neurite outgrowth. Direction and length of neurite outgrowth were recorded with respect to direction of the current. PMF exposed DRG exhibited asymmetrical growth parallel to the current direction with concomitant enhancement of neurite length. DRG cultures not PMF exposed had a characteristic radial pattern of neurite outgrowth. These results suggest that PMF may offer a noninvasive mechanism to direct and promote nerve regeneration.  相似文献   

17.
It has been shown that per os introduction of sunflower oil and starch to adult thymectomized mice resulted in reconstitution of the number of Thy-I+ spleen cells similar of the glutamic acid effect. Glutamic acid restored the immune response to sheep red blood cells (SRBC), however, sunflower oil and starch were not effective. The influence of these compounds on the immune response to SRBC in normal and sham-thymectomized mice was different: glutamic acid stimulated it, starch had no influence on the immune response, sunflower oil suppressed it.  相似文献   

18.
We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.  相似文献   

19.
Repeated in situ exposure of the rabbit knee joint to a pulsed magnetic field (1.5 T) is shown to suppress the functional activity of bone growth plates.  相似文献   

20.
In the clinic, although several pharmacological agents or surgical procedures are used to treat diabetes and diabetes‐induced neuropathic pain, their success has been limited. Therefore, development of different alternatives in treatments is very important. The purpose of this study was to determine the efficacy of pulsed magnetic field (PMF) in improving signs and symptoms of diabetic neuropathy. In this study, the effects of PMF treatment were investigated in Streptozotocin (STZ)‐induced acute and chronic diabetic rats by measuring the thermal latencies, mechanical thresholds, whole blood glucose levels and body weights. After STZ administration to rats, blood glucose level elevated and body weight decreased. Although PMF treatment did not affect changes in body weight, the blood glucose levels of PMF‐treated diabetic rats exhibited a decrease during the treatments. Diabetic animals displayed marked decrease in mechanical thresholds and thermal latencies. While treatment of PMF partially restored the mechanical thresholds and thermal latency in acute diabetic rats, PMF caused a corrective effect on only mechanical threshold of chronic diabetic rats. These results suggested that treatment of PMF can potentially ameliorate the painful symptoms of diabetes, such as hyperalgesia and allodynia, by partially preventing the hyperglycemia. Bioelectromagnetics 31:39–47, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号