首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolated, brush-border membrane of Hymenolepis diminuta contained an enzyme which hydrolyzed phosphodiester bonds. This enzyme appeared to be a Type I phosphodiesterase (E. C. 3.1.4.1) (produces nucleoside 5'-phosphates) and had no activity against synthetic, Type II phosphodiesterase substrates (mononucleotides substituted at the 3' position). The effects of various potential inhibitors of enzymatic activity, and cation requirements of this enzyme, demonstrated a distinct difference between the phosphodiesterase and alkaline phosphatase activities of the isolated, brush-border membrane. SDS-polyacrylamide gel electrophoresis of the isolated membrane preparation, followed by localization of phosphodiesterase activity in the gels, indicated the enzyme had a molecular weight of approximately 87,000. Thus, the phosphodiesterase activity represents a previously undescribed, membrane-bound enzyme of the brush-border of Hymenolepis diminuta.  相似文献   

2.
A biotinamine probe, 5-(biotinamido)pentylamine, was used for biotin-labeling of proteins in HT29 colon cancer cell extracts by endogenous transglutaminase activity. The biotin-labeled protein substrates were isolated and recovered by avidin-affinity chromatography. The proteins were separated using SDS-polyacrylamide gel electrophoresis, electroblotted onto a polyvinylidene difluoride membrane, visualized using Coomassie blue, cut out, and sequenced. Amino acid sequence data identified human fructose-1,6-bisphosphate aldolase A, an intracellular protein, as a substrate for cellular transglutaminase.  相似文献   

3.
The specific activities of the alkaline phosphatase (APase), type I phosphodiesterase and 5'-nucleotidase activities associated with the brush-border plasma membrane of the tapeworm, Hymenolepis diminuta, decrease significantly as the tapeworm grows and matures. Kinetic analyses of the APase activity associated with membrane preparations from whole 6-, 12-, and 18-d-old H diminuta, and individual pieces of 18-d-old H diminuta cut into ten pieces of equal length, failed to demonstrate qualitative changes in the APase activity. Therefore, the decreased specific activities are apparently due to changes in the ratios of enzymatically active to enzymatically inactive membrane proteins (ie, quantitative changes in the membrane proteins) which occur as the tapeworm grows.  相似文献   

4.
Summary Two methods to determine fructose-1,6-diphosphatase activity histochemically were tested on liver, intestine, skeletal muscle and heart of rats. Using lead ions to precipitate inorganic phosphate, according to Wachstein and Meisel, the addition of the specific inhibitor adenosine monophosphate caused an increase of phosphate precipitation. Therefore this method is often not suitable. A coupled assay, used to detect fructose-6-phosphate formed after conversion to glucose-6-phosphate (which in its turn may reduce tetrazolium dyes in the glucose-6-phosphate dehydrogenase reaction), was found to be satisfactory in liver to demonstrate specific fructose-1,6-diphosphatase activity, since adenosine monophosphate was strongly inhibitory. In intestine acid- and alkaline phosphatases, however, were found to interfere. In the latter organ, added adenosine monophosphate itself strongly stimulates formazan formation, which is probably due to high xanthine oxidase activity.In muscle, where a high aldolase activity is present, monoiodoacetate must be included in the incubation medium. Since fructose-1,6-diphosphatase activity in muscle is low compared with that of liver, the results obtained with muscle are often difficult to interpret.  相似文献   

5.
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.  相似文献   

6.
Phosphoenolpyruvate carboxylase (PEPC) was isolated from maize seeds which were germinated for 20 h, using a procedure which included extraction of seed homogenate with Tris-HCl or sodium phosphate buffer, precipitation of the extract with ammonium sulphate, chromatography on DEAE cellulose, and gel filtration on Sephadex G-200. Phosphate buffer was found to be less suitable than Tris-HCl buffer both for maize seed extraction and for further PEPC purification steps. The enzyme preparation obtained was electrophretically homogenous. PEPC activity was inhibited by both phosphate and malate. It values obtained at pH 8.1 which is the pH optimum of the reaction equelled to 42 mmoll-1 for phosphate and to 13 mmoll-1 for malate. PEPC isolated from germinating maize seeds was activated by glucose-6-phosphate, glucose-1-phosphate, ribulose-l,5-bisphosphate, fructose-1,6-bisphosphate, and fructose-2,6-bisphosphate. The authors intend to elucidate the mechanism of PEPC activation by sugars by means of the application of a number of derivatives of the sugar phosphates, among which for example 2-deoxy-2-fluoro glucosephosphate also activated PEPC. Sugar phosphates activated PEPC isolated from germinating maize seeds in this order, with increasing effect: fructose-l,6-bisphosphate, glucose-1-phosphate, glucose-6-phosphate, 2-deoxy-2-fluoro glucosephosphate, ribulose-l,5-bisphos-phate, fructose-2-6-bisphosphate.  相似文献   

7.
Purified rat renal brush-border membrane vesicles possess a heat-labile enzyme activity which hydrolyses NAD+. A reciprocal relationship exists between the disappearance of NAD+ and the appearance of adenosine; 2 mol of Pi are liberated from each mol of NAD+ incubated with brush-border membrane vesicles. Freezing and thawing brush-border membrane vesicles does not enhance the initial rate of NAD+ hydrolysis. Preincubation of brush-border membrane vesicles with NAD+ results in inhibition of Na+-dependent Pi-transport activity, whereas Na+-dependent glucose transport is not affected. EDTA, which prevents the release of Pi from NAD+ and which itself has no direct effect on brush-border membrane Pi transport, reverses the NAD+ inhibition of Na+-dependent Pi transport. These results suggest that it is the Pi liberated from NAD+ and not NAD+ itself that inhibits Na+-dependent Pi transport.  相似文献   

8.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

9.
One acid phosphatase (optimum pH at 5.4) was purified from maize scutellum after 96 hr of germination. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulfate (SDS). The enzyme has a MW of 65 000 ± 4000 as determined by Sephadex G-200 gel filtration and SDS-PAGE. The enzyme contained 16% neutral sugars, and cations are not required for activity. The purified enzyme was not inactivated by DTNB at pH 8. The hydrolysis of glucose-6-phosphate in the presence of 4 mM fluoride and 4 mm EDTA, at pH 6.7 (optimum pH), seems to be catalysed by this acid phosphatase.  相似文献   

10.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

11.
The isolated brush border membrane of Hymenolepis diminuta contained ribonuclease (RNase) activity which was demonstrable using yeast RNA or synthetic homopolymers of adenylic, cytidylic, inosinic, or uridylic acids as substrates. Polyguanylic acid was not hydrolyzed by worm RNase. RNase activity was inhibited by EDTA and divalent cations as well as sulfhydryl blocking and reducing agents. Polyguanylic acid and DNA were also inhibitors of RNase activity; these compounds were not hydrolyzed, but inhibited the hydrolysis of other substrates, possibly by nonproductive substrate binding. Data suggested that RNase (endonuclease) was probably the major enzyme activity in the degradation of long chain polyribonucleotides at the work's surface, while phosphodiesterase (exonuclease) activity did not contribute significantly to the hydrolysis of these compounds.  相似文献   

12.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

13.
The isomerase activity of the C-terminal fructose-6P binding domain (residues 241-608) of glucosamine-6-phosphate synthase from Escherichia coli has been studied. The equilibrium constant of the C-terminal domain k(eq) ([glucose-6P]/[fructose-6-P]) = 5.0. A non-competitive product inhibition of the isomerase activity by the reaction product glucose-6-P has been detected. The existence of more than one binding and reaction sites for the substrate fructose-6P on the molecule of glucosamine-6-phosphate synthase can be expected. The fructose-6P binding domain possibly includes a regulatory site, different from the catalytic center of the enzyme.  相似文献   

14.
Rat liver enzymes were used to study the relationship between their in vivo half-lives and their apparent hydrophobicity or their resistance to inactivation by mechanical shaking. The apparent hydrophobicity of these enzymes, measured as the percent of the protein recovered from an octyl-Sepharose column, is correlated with their known half-lives (r = 0.75, P less than 0.01). The presence of specific ligands which are known to increase compactness by impeding unfolding of proteins decreased the apparent hydrophobicity of fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase. Resistance of enzymes to inactivation by mechanical shaking correlated well with their in vivo half-lives (r = 0.90, P less than 0.01). When the shaking experiments were done in the presence of substrates, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase were protected from inactivation.  相似文献   

15.
1. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases have been found in homogenates of Arbacia eggs; 95 per cent of the activity toward each substrate is recovered in the supernatant fraction after centrifuging at 20,000 g for 30 minutes. 2. With glucose-6-phosphate as substrate) the rate of TPN reduction by the supernatant fraction from 1 gm. wet weight unfertilized or fertilized eggs was 1.8 to 3.0 micromoles per minute; this rate is sufficient to support a rate of oxygen consumption 24 times that observed for unfertilized, and 6 times that for fertilized, eggs. Pentose was formed from glucose-6-phosphate at a rate 0.3 to 0.5 that of TPN reduction, when both rates were expressed as micromoles per minute. 3. The concentrations of glucose-6-phosphate and 6-phosphogluconate for half maximal activity were each approximately 0.00004 M for the respective enzymes in the supernatant fraction. Maximal activity toward 6-phosphogluconate was 50 to 60 per cent of that toward glucose-6-phosphate. Glucose-6-phosphate dehydrogenase activity was 50 per cent inhibited in presence of 0.00006 M 2,4,5-trichlorophenol. 4. Reduction of DPN by the supernatant fraction in presence of fructose-1,6-diphosphate and ADP was 0.1 to 0.2 micromoles per minute per gm. wet eggs, indicating that the glycolytic pathway can metabolize glucose-6-phosphate at about 5 per cent the rate at which it can be oxidized by the TPN system from unfertilized or fertilized Arbacia eggs. 5. Phosphoglucomutase, hexose isomerase, and a phosphatase for fructose-1,6-diphosphate also appear to be present in Arbacia eggs.  相似文献   

16.
Cupin-type phosphoglucose isomerases (cPGIs) were identified in some archaeal and bacterial genomes and the respective coding function of cpgi's from the euryarchaeota Archaeoglobus fulgidus and Methanosarcina mazei, as well as the bacteria Salmonella enterica serovar Typhimurium and Ensifer meliloti, was proven by functional overexpression. These cPGIs and the cPGIs from Pyrococcus and Thermococcus spp. represent the cPGI family and were compared with respect to kinetic, inhibitory, thermophilic, and metal-binding properties. cPGIs showed a high specificity for the substrates fructose-6-phosphate and glucose-6-phosphate and were inhibited by millimolar concentrations of sorbitol-6-phosphate, erythrose-4-phosphate, and 6-phosphogluconate. Treatment of cPGIs with EDTA resulted in a complete loss of catalytic activity, which could be regained by the addition of some divalent cations, most effectively by Fe2+ and Ni2+, indicating a metal dependence of cPGI activity. The motifs TX3PX3GXEX3TXGHXHX6-11EXY and PPX3HX3N were deduced as the two signature patterns of the novel cPGI family. Phylogenetic analysis suggests lateral gene transfer for the bacterial cPGIs from euryarchaeota.  相似文献   

17.
Enzyme activities associated with maize kernel amyloplasts   总被引:15,自引:8,他引:7       下载免费PDF全文
Activities of the enzymes of gluconeogenesis and of starch metabolism were measured in extracts of amyloplasts isolated from protoplasts derived from 14-day-old maize (Zea mays L., cv Pioneer 3780) endosperm. The enzymes triosephosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, phosphohexose isomerase, phosphoglucomutase, ADPG pyrophosphorylase, UDPG pyrophosphorylase, soluble and bound starch synthases, and branching enzyme were found to be present in the amyloplasts. Of the above enzymes, ADPG pyrophosphorylase had the lowest activity per amyloplast. Invertase, sucrose synthase and hexokinase were not detected in similar amyloplast preparations. Only a trace of the cytoplasmic marker enzyme alcohol dehydrogenase could be detected in purified amyloplast fractions. In separate experiments, purified amyloplasts were lysed and then supplied with radioactively labeled glucose-6-phosphate, glucose-1-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, glucose, fructose, sucrose, and 3-0-methylglucose in the presence of adenosine triphosphate or uridine triphosphate. Of the above, only the phosphorylated substrates were incorporated into starch. Incorporation into starch was higher with added uridine triphosphate than with adenosine triphosphate. Dihydroxyacetone phosphate was the preferred substrate for uptake by intact amyloplasts and incorporation into starch. In preliminary experiments, it appeared that glucose-6-P and fructose-1,6-bisphosphate may also be taken up by intact amyloplasts. However, the rate of uptake and incorporation into starch was relatively low and variable. Additional study is needed to determine conclusively whether hexose phosphates will cross intact amyloplast membranes. From these data, we conclude that: (a) Triose phosphate is the preferred substrate for uptake by intact amyloplasts. (b) Amyloplasts contain all enzymes necessary to convert triose phosphates into starch. (c) Sucrose breakdown must occur in the cytosol prior to carbohydrate transfer into the amyloplasts. (d) Under the conditions of assay, amyloplasts are unable to convert glucose or fructose to starch. (e) Uridine triphosphate may be the preferred nucleotide for conversion of hexose phosphates to starch at this stage of kernel development.  相似文献   

18.
The effect of sugar and its phosphate derivatives on sorbitoldehydrogenase from bovine liver has been studied. The presence of 100 mM glucose, mannose, and arabinose did not influence that activity of the studied reaction, whereas fructose, sorbose, and xylose, inhibit the reaction by 20-25%. This can be explained in terms of inhibition by the final reaction products. Inhibition by glucose-6-phosphate (24%), glucose-1-phosphate (21%), and fructose-6-phosphate (42%) is of particular interest since these compounds may play a regulatory role.  相似文献   

19.
SDS-polyacrylamide gel electrophoresis of anti-glucose-6-phosphate dehydrogenase immunoprecipitates from radiolabeled uterine tissue extracts previously revealed three proteins: A, B and C, which were tentatively identified as a 60-64 kDa precursor form, a 57 kDa predominant form, and a 40-42 kDa nascent peptide form of the enzyme, respectively. A peptide-mapping technique was used to examine structural homologies among A, B and C. Following the labeling of uterine proteins with [35S]methionine, labeled proteins A, B and C were isolated by immunoprecipitation and electrophoresis. Each protein was individually co-digested with authentic, [3H]methionine-labeled glucose-6-phosphate dehydrogenase using papain, the resulting peptides were resolved by isoelectric focusing and the peptides from the two sources on each gel were compared using double-label counting methods. Proteins A, B and C had at least eight peptides in common, both proteins A and C had two additional peptides in common that were not present in protein B, and B protein had two peptides that were either absent or present in reduced amounts in digests of proteins A and C. The extensive structural homology and immunoreactivity of these proteins indicated that proteins A, B and C were all related to glucose-6-phosphate dehydrogenase. The presence of two extra peptides in proteins A and C suggested that these peptides may be derived from a common NH2-terminal leader sequence which was present in both the precursor and nascent peptide chains. The presence of two peptides that were present in protein B and absent from proteins A and C is easiest to explain if they are derived from the two ends of the molecule, with the corresponding peptides in proteins A and C containing additional peptide sequences that are 'normally' removed by endogenous proteolytic processing enzymes. Based on the relative time-course of synthesis of the three glucose-6-phosphate dehydrogenase-related proteins in control and estrogen-treated uteri, it appears that estradiol promotes an increase in the relative rate of transfer of label from protein A into B by stimulating the rate of processing of the precursor to the predominant form of the enzyme and enhances the rate of translational conversion of protein C into higher molecular weight forms.  相似文献   

20.
The subunit molecular weight of glucose-6-phosphate dehydrogenase (G6PD) from baker's yeast has been evaluated. The subunit molecular weight value is shown to be 25,500 daltons by analytical ultracentrifugation, SDS-polyacrylamide gel electrophoresis, and the number of peptides produced by CNBr cleavage. The number of NADP binding sites was determined to be one per 25,500 dalton unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号