首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial flagellar export apparatus is required for the construction of the bacterial flagella beyond the cytoplasmic membrane. The membrane‐embedded part of the export apparatus, which consists of FlhA, FlhB, FliO, FliP, FliQ and FliR, is located in the central pore of the MS ring formed by 26 copies of FliF. The C‐terminal cytoplasmic domain of FlhA is located in the centre of the cavity within the C ring made of FliG, FliM and FliN. FlhA interacts with FliF, but its assembly mechanism remains unclear. Here, we fused yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) to the C‐termini of FliF and FlhA and investigated their subcellular localization by fluorescence microscopy. The punctate pattern of FliF–YFP localization required FliG but neither FliM, FliN, FlhA, FlhB, FliO, FliP, FliQ nor FliR. In contrast, FlhA–CFP localization required FliF, FliG, FliO, FliP, FliQ and FliR. The number of FlhA–YFP molecules associated with the MS ring was estimated to be about nine. We suggest that FlhA assembles into the export gate along with other membrane components during the MS ring complex formation in a co‐ordinated manner.  相似文献   

2.
Most flagellar proteins are exported via a type III export apparatus which, in part, consists of the membrane proteins FlhA, FlhB, FliO, FliP, FliQ, and FliR and is housed within the membrane-supramembrane ring formed by FliF subunits. Salmonella FlhA is a 692-residue integral membrane protein with eight predicted transmembrane spans. Its function is not understood, but it is necessary for flagellar export. We have created mutants in which potentially important sequences were deleted. FlhA lacking the amino-terminal sequence prior to the first transmembrane span failed to complement and was dominant negative, suggesting that the sequence is required for function. Similar effects were seen in a variant lacking a highly conserved domain (FHIPEP) within a putative cytoplasmic loop. Scanning deletion analysis of the cytoplasmic domain (FlhAc) demonstrated that substantially all of FlhAc is required for efficient function. Affinity blotting showed that FlhA interacts with several other export apparatus membrane proteins. The implications of these findings are discussed, and a model of FlhA within the export apparatus is presented.  相似文献   

3.
The FliF ring complex, which consists of the M-S ring and a proximal portion of the rod of the flagellar basal body, is the base structure for the bacterial flagellar assembly. The FliF ring is also thought to be part of the export apparatus for flagellar proteins from its amino acid sequence homology to proteins involved in type III protein export systems. We established a new purification procedure for the FliF ring particles and carried out electron microscopic image analyses in their two distinct forms: well-dispersed single particles in the presence of salt and ordered monolayer arrays of hexagonal packing formed in the absence of salt. In both cases, the axial projection maps showed a common feature, a pair of concentric rings: the inner ring corresponds to the proximal rod; the outer ring represents the thick, edge portion of the M-S ring. However, the central channel of the FliF ring, the putative pathway for the flagellar protein export, appeared to show distinct structural features in the two forms. This suggests that a domain of FliF partially occupies the central channel to be involved in the export and gate mechanism, and the domain changes its conformation depending on the ionic strength.  相似文献   

4.
The bacterial flagellum is assembled from over 20 structural components, and flagellar gene regulation is morphogenetically coupled to the assembly state by control of the anti-sigma factor FlgM. In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar gene expression until the hook-basal body structural intermediate is completed and FlgM is inhibited by secretion from the cytoplasm. Here we demonstrate that FlgM is also secreted in the Gram-positive bacterium Bacillus subtilis and is degraded extracellularly by the proteases Epr and WprA. We further demonstrate that, like in S. enterica, the structural genes required for the flagellar hook-basal body are required for robust activation of σD-dependent gene expression and efficient secretion of FlgM. Finally, we determine that FlgM secretion is strongly enhanced by, but does not strictly require, hook-basal body completion and instead demands a minimal subset of flagellar proteins that includes the FliF/FliG basal body proteins, the flagellar type III export apparatus components FliO, FliP, FliQ, FliR, FlhA, and FlhB, and the substrate specificity switch regulator FliK.  相似文献   

5.
The cytoplasmic portion of the bacterial flagellum is thought to consist of at least two structural components: a switch complex and an export apparatus. These components seem to assemble around the MS ring complex, which is the first flagellar basal body substructure and is located in the cytoplasmic membrane. In order to elucidate the process of assembly of cytoplasmic substructures, the membrane localization of each component of the switch complex (FliG, FliM, and FliN) in various nonflagellated mutants was examined by immunoblotting. It was found that all these switch proteins require the MS ring protein FliF to associate with the cell membrane. FliG does not require FliM and FliN for this association, but FliM and FliN associate cooperatively with the membrane only through FliG. Furthermore, all three switch proteins were detected in membranes isolated from fliE, fliH, fliI, fliJ, fliO, fliP, fliQ, fliR, flhA, flhB, and flgJ mutants, indicating that the switch complex assembles on the MS ring complex without any other flagellar proteins involved in the early stage of flagellar assembly. The relationship between the switch complex and the export apparatus is discussed.  相似文献   

6.
For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly–disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

7.
During assembly of the bacterial flagellum, protein subunits that form the exterior structures are exported through a specialized secretion apparatus energized by the proton gradient. This category of protein transport, together with the similar process that occurs in the injectisomes of gram‐negative pathogens, is termed type‐III secretion. The membrane‐embedded part of the flagellar export apparatus contains five essential proteins: FlhA, FlhB, FliP, FliQ and FliR. Here, we have undertaken a variety of experiments that together support the proposal that the protein‐conducting conduit is formed primarily, and possibly entirely, by FliP. Chemical modification experiments demonstrate that positions near the center of certain FliP trans‐membrane (TM) segments are accessible to polar reagents. FliP expression sensitizes cells to a number of chemical agents, and mutations at predicted channel‐facing positions modulate this effect. Multiple assays are used to show that FliP suffices to form a channel that can conduct a variety of medium‐sized, polar molecules. Conductance properties are strongly modulated by mutations in a methionine‐rich loop that is predicted to lie at the inner mouth of the channel, which might form a gasket around cargo molecules undergoing export. The results are discussed in the framework of an hypothesis for the architecture and action of the cargo‐conducting part of the type‐III secretion apparatus.  相似文献   

8.
The MS ring of the flagellar basal body of Salmonella is an integral membrane structure consisting of about 26 subunits of a 61-kDa protein, FliF. Out of many nonflagellate fliF mutants tested, three gave rise to intergenic suppressors in flagellar region II. The pseudorevertants swarmed, though poorly; this partial recovery of motile function was shown to be due to partial recovery of export function and flagellar assembly. The three parental mutants were all found to carry the same mutation, a six-base deletion corresponding to loss of Ala-174 and Ser-175 in the predicted periplasmic domain of the FliF protein. The 19 intergenic suppressors identified all lay in flhA, and they consisted of 10 independent examples at the nucleotide level or 9 at the amino acid level. Since two of the nine corresponded to different substitutions at the same amino acid position, only eight positions in the FlhA protein have given rise to suppressors. Thus, FliF-FlhA intergenic suppression is a fairly rare event. FlhA is a component of the flagellar protein export apparatus, with an integral membrane domain encompassing the N-terminal half of the sequence and a cytoplasmic C-terminal domain. All of the suppressing mutations lay within the integral membrane domain. These mutations, when placed in a wild-type fliF background, had no mutant phenotype. In the fliF mutant background, mutant FlhA was dominant, yielding a pseudorevertant phenotype. Wild-type FlhA did not exert significant negative dominance in the pseudorevertant background, indicating that it does not compete effectively with mutant FlhA for interaction with mutant FliF. Mutant FliF was partially dominant over wild-type FliF in both the wild-type and second-site FlhA backgrounds. Membrane fractionation experiments indicated that the fliF mutation, though preventing export, was mild enough to permit assembly of the MS ring itself, and also assembly of the cytoplasmic C ring onto the MS ring. The data from this study provide genetic support for a model in which at least the FlhA component of the export apparatus physically interacts with the MS ring within which it is housed.  相似文献   

9.
Until now, identification of components of the flagellar protein export apparatus has been indirect. We have now identified these components directly by establishing whether mutants defective in putative export components could translocate export substrates across the cytoplasmic membrane into the periplasmic space. Hook-type proteins could be exported to the periplasm of rod mutants, indicating that rod protein export does not have to precede hook-type protein export and therefore that both types of proteins belong to a single export class, the rod/hook-type class, which is distinct from the filament-type class. Hook-capping protein (FlgD) and hook protein (FlgE) required FlhA, FlhB, FliH, FliI, FliO, FliP, FliQ, and FliR for their export to the periplasm. In the case of flagellin as an export substrate, because of the phenomenon of hook-to-filament switching of export specificity, it was necessary to use temperature-sensitive mutants and establish whether flagellin could be exported to the cell exterior following a shift from the permissive to the restrictive temperature. Again, FlhA, FlhB, FliH, FliI, and FliO were required for its export. No suitable temperature-sensitive fliQ or fliR mutants were available. FliP appeared not to be required for flagellin export, but we suspect that the temperature-sensitive FliP protein continued to function at the restrictive temperature if incorporated at the permissive temperature. Thus, we conclude that these eight proteins are general components of the flagellar export pathway. FliJ was necessary for export of hook-type proteins (FlgD and FlgE); we were unable to test whether FliJ is needed for export of filament-type proteins. We suspect that FliJ may be a cytoplasmic chaperone for the hook-type proteins and possibly also for FliE and the rod proteins. FlgJ was not required for the export of the hook-type proteins; again, because of lack of a suitable temperature-sensitive mutant, we were unable to test whether it was required for export of filament-type proteins. Finally, it was established that there is an interaction between the processes of outer ring assembly and of penetration of the outer membrane by the rod and nascent hook, the latter process being of course necessary for passage of export substrates into the external medium. During the brief transition stage from completion of rod assembly and initiation of hook assembly, the L ring and perhaps the capping protein FlgD can be regarded as bona fide export components, with the L ring being in a formal sense the equivalent of the outer membrane secretin structure of type III virulence factor export systems.  相似文献   

10.
Bacterial flagellar motor is a highly ordered and complex supramolecular structure that powers rotation of flagella and serves as a type III export apparatus for flagellar assembly. Motor biogenesis represents a formidable example of self-assembly, but little is known about early steps of the motor structure formation. Here we used a combination of fluorescence microscopy techniques to dissect the order of the motor assembly in Escherichia coli cells, to map in vivo the underlying protein interactions and to investigate dynamics of protein exchange in the assembled motor structure. Our data suggest that motor self-assembly is initiated by oligomerization of the membrane export apparatus protein FlhA, which is followed by the recruitment of the MS ring component FliF and by the ordered association of other motor proteins. The assembly process combines the hierarchy with cooperativity, whereby the association of each subsequent motor structure stabilizes the growing assembly. Our results provide a novel and so far the most complete view of the early steps in flagellar motor assembly and improve understanding of the motor structure and regulation.  相似文献   

11.
Salmonella FliR and FlhB are membrane proteins necessary for flagellar export. In Clostridium a fliR-flhB fusion gene exists. We constructed a similar Salmonella fusion gene which is able to complement fliR, flhB, and fliR flhB null strains. Western blotting revealed that the FliR-FlhB fusion protein retains the FlhB protein's cleavage properties. We conclude that the FliR and FlhB proteins are physically associated in the wild-type Salmonella basal body, probably in a 1:1 ratio.  相似文献   

12.
The flagellar basal body, a major part of the flagellar motor, consists of a rod and four rings. When the fliF gene of Salmonella typhimurium, which was previously shown to code for the component protein of the M ring, was cloned and overexpressed in Escherichia coli, the FliF subunits formed ring structures in the cytoplasmic membrane. Electron microscopic observation of the purified ring structures revealed that each was composed of two adjacent rings and a short appendage extending from the center of the rings. Antibodies raised against the purified FliF protein decorated both the M and S rings of the intact basal body. We conclude that the FliF protein is the subunit protein of the M ring, and of the S ring and of part of the proximal rod of the flagellar basal body.  相似文献   

13.
Hara N  Namba K  Minamino T 《PloS one》2011,6(7):e22417
For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate.  相似文献   

14.
The FliF ring is the base for self-assembly of the bacterial flagellum and the FliF/FliG ring complex is the core of the rotor of the flagellar motor. We report the structures of these two ring complexes obtained by electron cryomicroscopy and single-particle image analysis at 22A and 25A resolution, respectively. Direct comparison of these structures with the flagellar basal body made by superimposing the density maps on the central section reveals many interesting features, such as how the mechanically stable connection between the ring and the rod is formed, how directly FliF domains are involved in the near axial density of the basal body forming the proximal end of the central channel for a potential gating mechanism, some indication of flexibility in the connection of FliF and FliG, and structural and functional similarities to the head-to-tail connectors of bacteriophages.  相似文献   

15.
K Oosawa  T Ueno    S Aizawa 《Journal of bacteriology》1994,176(12):3683-3691
The flagellar switch proteins (FliG, FliM, and FliN) of Salmonella typhimurium were overproduced in Escherichia coli and partially purified in soluble form. They were mixed with purified MS ring complexes (which consist of subunits of FliF protein) to examine their interactions in vitro. The degree of interaction was estimated by ultracentrifugation, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From the band density on the gel, we estimated that FliG bound to the MS ring complex at an approximately 1:1 molar ratio (FliG:FliF), whereas FliM did so only at a 1:5 molar ratio (FliM:FliF). FliN did not bind to the MS ring complex by itself or in the presence of the other switch proteins. A possible configuration of the switch proteins is discussed.  相似文献   

16.
The FliG protein is a central component of the bacterial flagellar motor. It is one of the first proteins added during assembly of the flagellar basal body, and there are 26 copies per motor. FliG interacts directly with the Mot protein complex of the stator to generate torque, and it is a crucial player in switching the direction of flagellar rotation from clockwise (CW) to counterclockwise and vice versa. A primarily helical linker joins the N-terminal assembly domain of FliG, which is firmly attached to the FliF protein of the MS ring of the basal body, to the motility domain that interacts with MotA/MotB. We report here the results of a mutagenic analysis focused on what has been called the hinge region of the linker. Residue substitutions in this region generate a diversity of phenotypes, including motors that are strongly CW biased, infrequent switchers, rapid switchers, and transiently or permanently paused. Isolation of these mutants was facilitated by a "sensitizing" mutation (E232G) outside of the hinge region that was accidentally introduced during cloning of the chromosomal fliG gene into our vector plasmid. This mutation partially interferes with flagellar assembly and accentuates the defects associated with mutations that by themselves have little phenotypic consequence. The effects of these mutations are analyzed in the context of a conformational-coupling model for motor switching and with respect to the structure of the C-terminal 70% of FliG from Thermotoga maritima.  相似文献   

17.
Flagellar type III protein export is highly organized and well controlled in a timely manner by dynamic, specific and cooperative interactions among components of the export apparatus, allowing the huge and complex macromolecular assembly to be built efficiently. The bacterial flagellum, which is required for motility, consists of a rotary motor, a universal joint and a helical propeller. Most of the flagellar components are translocated to the distal, growing end of the flagellum for assembly through the central channel of the flagellum itself by the flagellar type III protein export apparatus, which is postulated to be located on the cytoplasmic side of the flagellar basal body. The export specificity switching machinery, which consists of at least two proteins that function as a molecular ruler and an export switch, respectively, monitors the state of hook-basal body assembly in the cell exterior and switches export specificity, thereby coupling sequential flagellar gene expression with the flagellar assembly process. The export ATPase complex composed of an ATPase and its regulator acts as a pilot to deliver its export substrate to the export gate and helps initial entry of the substrate N-terminal chain into a narrow pore of the export gate. The energy of ATP hydrolysis appears to be used to disassemble and release the ATPase complex from the protein about to be exported, and the rest of the successive unfolding/translocation process of the long polypeptide chain is driven solely by proton motive force (PMF), perhaps through biased one-dimensional Brownian diffusion. Interestingly, the subunits of the ATPase complex have significant sequence similarities to subunits of F(0)F(1)-ATP synthase, a rotary motor that drives the chemical reaction of ATP synthesis using PMF, and the entire crystal structure of the export ATPase is extremely similar to the alpha/beta subunits of F(0)F(1)-ATP synthase, suggesting that the flagellar export apparatus and F(0)F(1)-ATP synthase share the mechanism for their two distinct functions.  相似文献   

18.
Twenty-six FliF monomers assemble into the MS ring, a central motor component of the bacterial flagellum that anchors the structure in the inner membrane. Approximately 100 amino acids at the C terminus of FliF are exposed to the cytoplasm and, through the interaction with the FliG switch protein, a component of the flagellar C ring, are essential for the assembly of the motor. In this study, we have dissected the entire cytoplasmic C terminus of the Caulobacter crescentus FliF protein by high-resolution mutational analysis and studied the mutant forms with regard to the assembly, checkpoint control, and function of the flagellum. Only nine amino acids at the very C terminus of FliF are essential for flagellar assembly. Deletion or substitution of about 10 amino acids preceding the very C terminus of FliF resulted in assembly-competent but nonfunctional flagella, making these the first fliF mutations described so far with a Fla(+) but Mot(-) phenotype. Removal of about 20 amino acids further upstream resulted in functional flagella, but cells carrying these mutations were not able to spread efficiently on semisolid agar plates. At least 61 amino acids located between the functionally relevant C terminus and the second membrane-spanning domain of FliF were not required for flagellar assembly and performance. A strict correlation was found between the ability of FliF mutant versions to assemble into a flagellum, flagellar class III gene expression, and a block in cell division. Motile suppressors could be isolated for nonmotile mutants but not for mutants lacking a flagellum. Several of these suppressor mutations were localized to the 5' region of the fliG gene. These results provide genetic support for a model in which only a short stretch of amino acids at the immediate C terminus of FliF is required for flagellar assembly through stable interaction with the FliG switch protein.  相似文献   

19.
Type III secretion systems identified in bacterial pathogens of animals and plants transpose effectors and toxins directly into the cytosol of host cells or into the extracellular milieu. Proteins of the type III secretion apparatus are conserved among diverse and distantly related bacteria. Many type III apparatus proteins have homologues in the flagellar export apparatus, supporting the notion that type III secretion systems evolved from the flagellar export apparatus. No type III secretion apparatus genes have been found in the complete genomic sequence of Campylobacter jejuni NCTC11168. In this study, we report the characterization of a protein designated FlaC of C. jejuni TGH9011. FlaC is homologous to the N- and C-terminus of the C. jejuni flagellin proteins, FlaA and FlaB, but lacks the central portion of these proteins. flaC null mutants form a morphologically normal flagellum and are highly motile. In wild-type C. jejuni cultures, FlaC is found predominantly in the extracellular milieu as a secreted protein. Null mutants of the flagellar basal rod gene (flgF) and hook gene (flgE) do not secrete FlaC, suggesting that a functional flagellar export apparatus is required for FlaC secretion. During C. jejuni infection in vitro, secreted FlaC and purified recombinant FlaC bind to HEp-2 cells. Invasion of HEp-2 cells by flaC null mutants was reduced to a level of 14% compared with wild type, suggesting that FlaC plays an important role in cell invasion.  相似文献   

20.
Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号