首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The neuroendocrine reproductive and stress axes are known to be closely linked, but the mechanisms underlying these links remain poorly understood. In the ovine brain, GnRH neurons do not contain type II glucocorticoid (GR), progesterone (PR), or alpha estrogen (ERalpha) receptors. We sought to determine whether PR, ERalpha, and GR coexist within the same hypothalamic neurons. A triple immunocytochemical study, involving antisera raised in three different species, was performed on cryostat sections from ovariectomized ewes treated either with estradiol and progesterone or with progesterone alone. All PR-immunoreactive neurons contained ERalpha, and about 95% of ERalpha were PR immunoreactive in the preoptic area and arcuate nucleus. Although the PR with ERalpha colocalization ratio was not affected by the steroid treatments, immunolabeling for PR was weaker in animals that did not receive estradiol. Numerous PR- and ERalpha-immunoreactive cells contain GR. PR+ERalpha+GR-immunoreactive cells represent 70% of PR, 65% of ERalpha, and 72% of GR in the preoptic area and 70% of PR, 66% of ERalpha, and 63% of GR in the arcuate nucleus. These results suggest that estrogen, progesterone, and glucocorticoids may influence the activity of the same neurons to modulate both reproductive and stress axes.  相似文献   

3.
The purpose of this study was to determine the distribution of estrogen receptors (ER) and progestin receptors (PR) in specific uterine cell populations during various steroid hormone treatment regimens, and to determine if ER and PR distribution in the uterus is altered during implantation and the establishment of pregnancy in the cat. The tissues were processed for indirect immunocytochemical localization of receptors using specific monoclonal antibodies against ER and PR. ER were present in the nuclei of all epithelial cells and stromal fibroblasts in endometrium obtained from ovariectomized animals, whereas PR were only detectable in the nuclei of stromal fibroblasts. There was an apparent increase in the staining intensity and number of nuclei that stained positively for both ER and PR in all cell populations after 14 days of estradiol treatment. The administration of progesterone for 14 and 21 days, in the presence or absence of continuous estradiol, reduced the apparent intensity of staining and the number of nuclei staining positively for both ER and PR. ER were undetectable in the luminal epithelium, but remained in the glandular epithelial cells and stromal fibroblasts, whereas PR were only detectable in stromal fibroblasts. ER and PR localization in the endometrium obtained from estrus animals was similar to that observed in the estradiol-treated animals. A general decrease in intensity of staining for both ER and PR was evident by Day 5 postcoitus in pregnant animals. This decrease in intensity of staining continued until Day 12 postcoitus, when the distributions of ER and PR were similar to those observed in the ovariectomized estradiol-primed, progesterone-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of plane of nutrition on progesterone receptor (PR) and estrogen receptor alpha (ERalpha) expression in ovine endometrium was investigated. Rasa Aragonesa ewes (n=26) were fed diets to provide either 1.5 (Group C) or 0.5 (Group L) times the daily maintenance requirement and were slaughtered at Days 5 or 10 of the estrous cycle (Day 0=estrus). PR and ERalpha immunoreactivity were analyzed in eight endometrial cell compartments, defined by cell type and location. Group L had less PR immunostaining on Day 5 (P<0.05), which is consistent with lesser endometrial content of progesterone found in such animals. Most cell types of Group C had down regulation of PR at Day 10, but in Group L, this pattern was observed only in three cell compartments. The lesser PR contents found at Day 5 in Group L ewes may explain the lack of inhibition of PR. No effect of treatment or day of the estrous cycle was observed in ERalpha. Results indicate that endometrial PR is affected in a cell type, in specific manner, by plane of nutrition.  相似文献   

5.
An immunoperoxidase staining technique was used to localize receptors for progesterone and estrogen in the uterus of the mare. Specific staining for receptors was limited to cell nuclei. During estrus, stromal cells tended to stain more intensely for both receptor types than myometrial cells or luminal and glandular epithelial cells. During diestrus, staining intensities in stromal and myometrial cells tended to decrease. Staining intensities of epithelial cells were not affected by the cycle stage. Early pregnancy did not markedly affect the staining intensities of pregnant mares compared with the nonpregnant mares on Day 14 of diestrus. In mares susceptible to endometritis from which samples were taken during diestrus, stromal and myometrial staining for estrogen receptors was more intense than in endometrium from genitally-normal mares.  相似文献   

6.
目的从孕激素受体(PR)的角度探讨同期发情处理与自然发情小鼠的子宫内膜上,孕激素受体分布是否受内源孕激素的特异诱导而变化,两者之间是否存在差异。方法27只同日龄母鼠,根据处理方式的不同随机分为三个组:自然发情假孕组(对照组)、同期发情处理假孕组和自然发情假孕第l天摘除卵巢组,3个组的小鼠在见栓后第4、6、8天分别取样后,采用免疫组织化学法观察小鼠子宫内膜中孕激素受体的分布情况。结果免疫组化结果显示,三个处理组小鼠子宫内膜的三种细胞中都有PR存在;见栓第4天时,同期发情处理组小鼠子宫腺上皮细胞和基质细胞的PR胞核阳性率显著高于自然发情组(P〈0.05);见栓第6天时,同期发情处理组小鼠子宫内膜三种细胞中的PR胞核阳性率显著高于自然发情组(P〈0.05);同时自然发情假孕第1天摘除卵巢组在见栓第6和8天时的阳性率均显著低于其它两组(P〈0.05)。结论同期发情处理的小鼠子宫内膜中孕激素受体分布显著高于自然发情小鼠,且两者都受其内源性孕激素的特异诱导而变化。  相似文献   

7.
8.
The aim of the present study was to evaluate the susceptibility of the corpus luteum to d-cloprostenol (synthetic analog of PGF(2α)) throughout the luteal phase in llamas. Female llamas (n=43) were induced to ovulate by GnRH injection in the presence of an ovulatory follicle and randomly assigned into one of six groups: control and treated with an injection of d-cloprostenol on Day 3, 4, 5, 6 or 8 post GnRH. Blood samples were collected to determine plasma progesterone concentrations. There was no effect of treatment on animals injected on Day 3 or 4 post-GnRH. In animals treated on Day 5, different responses were observed. No effect of treatment was recorded in 27% of the animals whereas 55% of the llamas showed a transitory decrease followed by a recovery in plasma progesterone concentrations after d-cloprostenol injection, indicative of a resurgence of the corpus luteum, extending the luteal phase a day more than in control animals. In the remaining 18% of the animals injected on Day 5, (corresponding to those exhibiting the greatest plasma progesterone concentrations at the day of injection), complete luteolysis was observed. Plasma progesterone concentrations decreased to below 1 ng ml(-1) 24 h after d-cloprostenol in llamas injected on Day 6 or 8 post-GnRH. In conclusion, the corpus luteum of llamas is completely refractory to PGF(2α) until Day 4 after induction of ovulation, being partially sensitive by Day 5 and fully responsive to PGF(2α), by Day 6 after induction of ovulation.  相似文献   

9.
Measurements performed using cell lines or animal tissues have shown that the progesterone receptor (PR) can be induced by estrogens. By use of immunohistochemistry we studied the effects of estrogens on the PR levels in the individual cell types of the target organs uterus and breast. In the uteri of rats, ovariectomy induced a decrease in PR immunoreactivity within the myometrium and outer stromal cell layers. In contrast, in the uterine luminal and glandular epithelium and surrounding stromal cell layers the PR immunoreactivity was significantly enhanced. The same picture emerged when intact rats were treated with the pure estrogen receptor antagonist, ZM 182780 (10 mg/kg/d). Treatment of ovariectomized rats with estradiol resulted in high PR levels in the myometrium and stroma cells but low PR immunoreactivity in the epithelial cells. The ER-mediated repression of the PR immunoreactivity was evidently restricted to the uterine epithelium, as we found that in the epithelial cells of the mammary gland and in cells of N-nitrosomethylurea-induced mammary carcinomas the PR expression was induced by estrogens and was blocked by the pure antiestrogen ZM 182780. These results clearly show that in the rat the activated ER induces diverging effects on PR expression in different cell types even within the same organ.  相似文献   

10.
Phase-dependent apoptotic changes in the human endometrium during an ovarian cycle imply a potential role of steroids in the regulation of apoptosis. The present study was undertaken to determine the direct role of hormones in endometrial apoptosis in marmosets (Callithrix jacchus), a primate species which shows similarity to humans in terms of the cycle length and pattern. Endometrial apoptosis was detected by 3'-end labeling (TUNEL) in various phases of ovarian cycle in naturally cycling healthy marmosets (n=14) and also in ovariectomized marmosets (n=13) treated with either estradiol alone (E) or progesterone alone (P) or estradiol followed by progesterone (E+P). Expressions of apoptosis associated genes such as Bcl-2 family members (Bax and Bcl-2), proliferating cell nuclear antigen (PCNA)--a proliferation marker and steroid receptors, ERalpha and PR A were analysed by immunohistochemical methods. Apoptosis was intense in the glandular epithelial cells of endometrium during the mid-luteal phase as compared to other phases in naturally cycling animals; in the E+P group as compared to other groups of ovariectomized animals (P<0.05). Pronounced apoptosis in the mid-luteal phase was accompanied by the increased expression of Bax in glandular epithelial cells; while Bcl-2 immunoreactivity remained unchanged. PCNA expression was higher in the naturally cycling animals in the follicular phase and in the E group of the ovariectomized animals as compared those in the other groups. Immunoreactive ERalpha and PR A in glandular epithelial cells were most abundant during early follicular phase in naturally cycling animals and in both E and E+P groups among the ovariectomized animals. The present study highlights the importance of apoptosis in endometrial remodeling during the ovarian cycle and secondly, the role of both estradiol and progesterone in the regulation of apoptosis.  相似文献   

11.
The influence of different estrogen and/or progesterone treatments on concentrations of A and B forms of progesterone receptor (PR-A and PR-B) in the different cell types of chick oviduct was studied. A semiquantitative immunohistochemical assay for cellular PR concentrations was developed using a computer-assisted image analysis system. The staining intensity of nuclear PR in the basal layer of epithelial cells, glandular, smooth muscle and mesothelial cells was analysed separately using two monoclonal antibodies, PR6 and PR22. The measured concentrations of PR varied between different cell types and from cell to cell. A significant decrease in PR concentration, as noted by a decrease in staining intensity, was observed in all cell types studied 2 or 6 h after a single injection of progesterone with or without simultaneous estrogen administration. The decrease was also verified with immunoblotting and an immunoenzymometric assay (IEMA) for chicken PR. After down-regulation the concentration of PR recovered to the control level within 48 h after progesterone or estrogen administration. Estrogen administration alone was observed to cause changes in the concentration of PR-A only, having little or no effect on PR-B concentration depending on the cell type studied.

These findings indicate that estrogen and progesterone cause cell-specific changes not only to the total concentration of PR but also to the cellular ratio of PR-A and PR-B.  相似文献   


12.
The present study was carried out to evaluate apoptosis in endometrium and to correlate these changes with the circulating levels of estradiol and progesterone in the mouse. Apoptosis was observed in various compartments of mouse uterus i.e. stroma, glandular epithelium and luminal epithelium depending on the stage of cycle. Stromal cell apoptosis was observed during various stages of cyclicity except on estrus day. Luminal epithelial cells showed apoptotic changes during all stages of cyclicity except on diestrus day. During metestrus, apoptosis was observed in glandular and luminal epithelia as well as stromal cells. Steroid antagonists such as tamoxifen and onapristone altered the apoptotic changes in the uterus. The results suggest that epithelial cell apoptosis is regulated by estrogen while stromal cell apoptosis is under the control of progesterone.  相似文献   

13.
The objective of this study was to investigate differences in the expression of estrogen receptor-alpha (ERalpha), progesterone receptor (PR) and the proliferative indexes (Ki-67), in the uterus and oviduct of sheep with estrus synchronized either by prostaglandin analogues (Group PA, n=27) or by treatment with progestagens (Group P, n=29) on days 4 and 7 (day 0=estrus), when the embryos were collected. Immunohistochemical methods were used to quantify ERalpha, PR and Ki-67 in six superficial and deep compartments in the uterus and oviduct. The expression of ERalpha was significantly (P<0.01) lower in progestagen treated ewes than in prostaglandin analogues treated group in the luminal epithelium, superficial glands and superficial stroma in the uterus on day 4. The expression of PR was significantly lower in progesterone treated ewes than in the PA Group in the superficial gland (P<0.05) in both days studied. The lowest expression of PR was observed in the luminal caruncular epithelium and superficial glands in both treatments, obtaining the lowest levels on day 4 (P<0.05). There were significant differences between days 4 and 7 in the Ki-67 immunostaining in the luminal epithelium (P<0.01) and superficial glands (P<0.05). A higher cell proliferation was observed in the uterine epithelium (P<0.05) on day 4 in the animals treated with progestagens. Results indicate that sheep with synchronization of estrus with progestagens showed a reduction of ERalpha and PR protein expression in most of oviductal and uterine cells.  相似文献   

14.
Estradiol is a potential candidate for the blastocyst signal responsible for maternal recognition of pregnancy in the llama (Lama glama). Two experiments were conducted to determine if the llama blastocyst produces estradiol during the presumed period of maternal recognition of pregnancy and if exogenous estradiol can extend the luteal phase. In Experiment 1, llamas were superovulated with eCG and mated 7 days later (Day 0=day of mating). Blastocysts were collected nonsurgically on Days 7, 9, or 11 or at necropsy on Days 13 and 15 post-mating and cultured for 48h. Conditioned medium was recovered, replaced with fresh medium at 24-h intervals, and assayed for estradiol-17beta. Estradiol production (pg/blastocyst) over the 48-h culture increased (P<0.05) by day of gestation where more estradiol (P<0.05) was produced by Day 11 compared to Day 7 blastocysts, Day 13 compared to Days 7-11 blastocysts, and Day 15 compared to Days 7-13 blastocysts. A dramatic increase was observed between Days 11 and 13 when estradiol production by Day 13 blastocysts increased (P<0.05) more than 50-fold. In Experiment 2, 30 females were induced to ovulate with hCG (Day 0=day of hCG injection). Starting on Day 7 and continuing through Day 15, animals received daily injections i.m. of 0 (n=11), 5 (n=7), or 10mg (n=12) estradiol benzoate (EB) dissolved in isopropylmyristate. Sera were collected immediately prior to each injection and on Days 16, 17, 18, 20, and 22 and analyzed for progesterone. Progesterone concentrations were greater (P<0.05) on Days 14, 15, 16, and 17 in llamas treated with 10mg EB compared to llamas treated with 0mg EB. These results demonstrate that llama blastocysts produce estradiol and exogenous estradiol can enhance and transiently extend luteal progesterone production. Estradiol produced by the preimplantation llama blastocyst may play a role in maternal recognition of pregnancy and early luteal support.  相似文献   

15.
The aim was to investigate the histologic distribution of estrogen receptor α (ERα), oxytocin receptor (OxR), LH receptor (LHR), and cyclooxygenase-2 (COX-2) in the cervix of the ewe during the estrous cycle. Immunohistochemistry was performed in the cranial and caudal cervix of Corriedale ewes on Day 1 (n = 6), 6 (n = 5), or 13 (n = 6) after estrous detection (Day 0). The ERα proportional score (%ERα nuclei) was lower in the cranial cervix than in the caudal cervix, whereas the OxR and COX-2 immunostaining areas (%areas) were greater in the cranial cervix than in the caudal cervix (P < 0.04). The %ERα nuclei decreased from Days 1 to 13 in luminal epithelia, but increased from Days 1 to 6 or remained unchanged in stromata (P < 0.003). The %OxR area was higher on Day 6 than on Days 1 and 13 in the superficial glandular epithelium, and increased from Days 1 to 13 in the deep glandular epithelium (P < 0.04). The %LHR area increased during the estrous cycle in luminal epithelia and fold stroma (P < 0.004). The %COX-2 area was restricted to epithelia, and it was lower on Day 1 than on Days 6 and 13 in luminal epithelia (P < 0.05). Differences in ERα, OxR, LHR, and COX-2 between cranial and caudal cervical zones indicate different physiological functions, and their cyclic variations in the cervical epithelia, in contrast to little or no variations in the stroma, suggest a hormone-responsive driving role of epithelia in cervical function.  相似文献   

16.
The objectives of this study were to investigate in the goat uterus the expression of estrogen-alpha (ER alpha) and progesterone receptors (PR) and their relationship to proliferation indices (Ki-67) during peri-implantation on Days 22 to 30 post coitum (pc). Immunohistochemical methods were used to quantify ER alpha and PR for luminal and deep regions of the endometrium and of the myometrium. On Day 22 pc cell proliferation was only observed in the luminal epithelium. On Day 24 pc, high cell proliferation indices were seen in luminal epithelium and proliferation began in the luminal stroma and glands. There was a positive correlation between Ki-67 and total ER alpha score in the luminal epithelium (r = 0.53, P < 0.01). Levels of PR scores were highly correlated with Ki-67 indices in luminal epithelium (r = 0.74, P < 0.01) and stroma (r = 0.70, P < 0.01). No Ki-67 expression was observed in deep glands, stroma or myometrium on any of the days studied. Results indicate that patterns of ER alpha and PR expression differ markedly, and that there was a high correlation between PR expression and cell proliferation in the caprine uterus during the peri-implantation period.  相似文献   

17.
18.
19.
The effects of the steroid hormones estrogen and progesterone on peptidylarginine deiminase protein-L-arginine iminohydrolase, EC 3.5.3.15) levels in adult ovariectomized mouse uterus were studied. The amount of the enzyme in the uterus was considerably diminished by ovariectomy. When the mice were injected with a variety of estrogenic compounds, 17 beta-estradiol-3-benzoate, which was the most potent stimulator of uterine cell proliferation among the estrogens tested, dramatically elevated the enzyme formation of the uterus in a dose- and time-dependent fashion. Results of immunohistochemistry with the antiserum against mouse peptidylarginine deiminase demonstrated that the induction of the enzyme by the estradiol exclusively occurred at the luminal and glandular epithelia, corresponding with the previous findings in the normal estrous cycle. Furthermore, administration of the estradiol significantly increased the content of mRNA coding for peptidylarginine deiminase in uterus, indicating the evidence of regulation in pretranslation. On the other hand, progesterone alone did not restore the enzyme level of the ovariectomized mouse, but moderated the action of estrogen when given in concert with estrogen. Thus, the expression of peptidylarginine deiminase in luminal and glandular epithelia of mouse uterus is controlled by the amount of the steroid hormones estrogen and progesterone.  相似文献   

20.
Histoarchitectural changes of the uterine cervix allow its successful adaptation to different physiological conditions. In this study, we evaluated cell turnover in each cellular compartment of the uterine cervix in association with steroid hormone receptor expression in order to establish the range of physiological changes. Proliferation, apoptosis, and progesterone receptor (PR) and estrogen receptor alpha (ERalpha) expression were evaluated in cycling, pregnant, and postpartum rats. In estrus and diestrus II, ERalpha and PR expression exhibited variations according to the region evaluated. Proliferation and apoptosis showed a reciprocal pattern, the epithelium being the region with higher cell turnover. High apoptotic index (AI) in estrus was associated with the lowest ERalpha and the highest PR scores. During pregnancy, proliferation of the epithelium was the predominant event and AI was low. On Postpartum Day 1 (PPD1), proliferation decreased while apoptosis increased. As described for the estrous cycle, during pregnancy and PPD1, AI and ERalpha were negatively correlated. In the fibroblastic stroma, low proliferation was observed throughout pregnancy; however, there was a net increase in cell number because very few cells underwent apoptosis. No difference in ERalpha was observed in fibroblastic cells during pregnancy and postpartum; however, a great decrease of this receptor in the epithelial compartment was observed after delivery. Unlike cervical epithelium, PR was highly expressed in stromal cells. At term, a dramatic increase in epithelial PR was observed. While epithelial PR remained high on PPD1, a decrease was observed in muscle stroma. These results show that, in all stages studied, 1) ERalpha and PR have different patterns of expression with differential responses to signals that modulate proliferation and/or apoptosis depending on the cellular compartment, and 2) even though the epithelium is the region with the highest cell turnover, the fibroblastic and muscle stroma are active regions that have their own patterns of behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号