首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We determined the effect of fat adaptation on metabolism and performance during 5 h of cycling in seven competitive athletes who consumed a standard carbohydrate (CHO) diet for 1 day and then either a high-CHO diet (11 g. kg(-1)x day(-1) CHO, 1 g x kg(-1) x day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.6 g x kg(-1) x day(-1) CHO, 4.6 g x kg(-1) x day(-1) fat; fat-adapt) for 6 days. On day 8, subjects consumed a high-CHO diet and rested. On day 9, subjects consumed a preexercise meal and then cycled for 4 h at 65% peak O(2) uptake, followed by a 1-h time trial (TT). Compared with baseline, 6 days of fat-adapt reduced respiratory exchange ratio (RER) with cycling at 65% peak O(2) uptake [0.78 +/- 0.01 (SE) vs. 0.85 +/- 0.02; P < 0.05]. However, RER was restored by 1 day of high-CHO diet, preexercise meal, and CHO ingestion (0.88 +/- 0.01; P < 0.05). RER was higher after HCHO than fat-adapt (0.85 +/- 0.01, 0.89 +/- 0.01, and 0.93 +/- 0.01 for days 2, 8, and 9, respectively; P < 0.05). Fat oxidation during the 4-h ride was greater (171 +/- 32 vs. 119 +/- 38 g; P < 0.05) and CHO oxidation lower (597 +/- 41 vs. 719 +/- 46 g; P < 0.05) after fat-adapt. Power output was 11% higher during the TT after fat-adapt than after HCHO (312 +/- 15 vs. 279 +/- 20 W; P = 0.11). In conclusion, compared with a high-CHO diet, fat oxidation during exercise increased after fat-adapt and remained elevated above baseline even after 1 day of a high-CHO diet and increased CHO availability. However, this study failed to detect a significant benefit of fat adaptation to performance of a 1-h TT undertaken after 4 h of cycling.  相似文献   

2.
The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 +/- 20 vs. 42 +/- 16 g/h; P < 0.01) and cycling (57 +/- 16 vs. 35 +/- 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 +/- 4 vs. 23 +/- 3%; P < 0.01) and cycling (36 +/- 5 vs. 22 +/- 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 +/- 32 vs. 141 +/- 34 mmol/kg dry mass) or cycling (227 +/- 36 vs. 216 +/- 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.  相似文献   

3.
Five days of a high-fat diet while training, followed by 1 day of carbohydrate (CHO) restoration, increases rates of whole body fat oxidation and decreases CHO oxidation during aerobic cycling. The mechanisms responsible for these shifts in fuel oxidation are unknown but involve up- and downregulation of key regulatory enzymes in the pathways of skeletal muscle fat and CHO metabolism, respectively. This study measured muscle PDH and HSL activities before and after 20 min of cycling at 70% VO2peak and 1 min of sprinting at 150% peak power output (PPO). Estimations of muscle glycogenolysis were made during the initial minute of exercise at 70% VO2peak and during the 1-min sprint. Seven male cyclists undertook this exercise protocol on two occasions. For 5 days, subjects consumed in random order either a high-CHO (HCHO) diet (10.3 g x kg(-1) x day(-1) CHO, or approximately 70% of total energy intake) or an isoenergetic high-fat (FAT-adapt) diet (4.6 g x kg(-1) x day(-1) FAT, or 67% of total energy) while undertaking supervised aerobic endurance training. On day 6 for both treatments, subjects ingested an HCHO diet and rested before their experimental trials on day 7. This CHO restoration resulted in similar resting glycogen contents (FAT-adapt 873 +/- 121 vs. HCHO 868 +/- 120 micromol glucosyl units/g dry wt). However, the respiratory exchange ratio was lower during cycling at 70% VO2peak in the FAT-adapt trial, which resulted in an approximately 45% increase and an approximately 30% decrease in fat and CHO oxidation, respectively. PDH activity was lower at rest and throughout exercise at 70% VO2peak (1.69 +/- 0.25 vs. 2.39 +/- 0.19 mmol x kg wet wt(-1) x min(-1)) and the 1-min sprint in the FAT-adapt vs. the HCHO trial. Estimates of glycogenolysis during the 1st min of exercise at 70% VO2peak and the 1-min sprint were also lower after FAT-adapt (9.1 +/- 1.1 vs. 13.4 +/- 2.1 and 37.3 +/- 5.1 vs. 50.5 +/- 2.7 glucosyl units x kg dry wt(-1) x min(-1)). HSL activity was approximately 20% higher (P = 0.12) during exercise at 70% VO2peak after FAT-adapt. Results indicate that previously reported decreases in whole body CHO oxidation and increases in fat oxidation after the FAT-adapt protocol are a function of metabolic changes within skeletal muscle. The metabolic signals responsible for the shift in muscle substrate use during cycling at 70% VO2peak remain unclear, but lower accumulation of free ADP and AMP after the FAT-adapt trial may be responsible for the decreased glycogenolysis and PDH activation during sprinting.  相似文献   

4.
This randomized, double-blind, placebo-controlled study was designed to determine the influence of exercise mode, and 6% carbohydrate (C) versus placebo (P) beverage ingestion, on ratings of perceived exertion (RPE) and hormonal regulation to 2.5 h of high-intensity running and cycling (approximately 75% maximum oxygen uptake) by ten triathletes who acted as their own controls. Statistical significance was set at P < or = 0.05. The pattern of change in RPE over time was significantly different between C and P ingestion (P < 0.001) and between running and cycling modes (P = 0.001). The lowest RPE values were seen in the C-cycling sessions and the highest in the P-running sessions. The pattern of change in the respiratory exchange ratio and fat and carbohydrate oxidation rates were significantly different between the C and P conditions but not between the running and cycling modes. C relative to P ingestion (but not exercise mode) was associated with higher plasma levels of glucose and insulin and lower plasma cortisol and growth hormone levels. The pattern of change in plasma levels of catecholamines and lactate did not differ between the C and P conditions. These data indicate that a lower RPE was associated with a higher level of carbohydrate oxidation, higher plasma glucose and insulin levels, and lower plasma cortisol and growth hormone levels during cycle exercise following C supplementation as compared to P feeding. These findings support a physiological link between RPE and carbohydrate substrate availability as well as selected hormonal regulation during cycle exercise.  相似文献   

5.
This study examined the effectiveness of ingesting a carbohydrate or carbohydrate + medium-chain triglycerides (MCT) on metabolism and cycling performance. Eight endurance-trained men [peak O(2) uptake = 4.71 +/- 0.09 (SE) l/min] completed 35 kJ/kg as quickly as possible [time trial (TT)] while consuming 250 ml/15 min of either a 6% (wt/vol) carbohydrate solution (C), a 6% carbohydrate + 4.2% MCT solution (C+M), or a sweet placebo (P). Time to complete the set amount of work was reduced in both C and C+M compared with P by 7 and 5%, respectively (C: 166 +/- 7 min; C+M: 169 +/- 7 min; P: 178 +/- 11 min; P < 0.01). Plasma glucose concentration was maintained at or above resting values throughout both C and C+M trials but decreased (P < 0.05) below resting values in P at the completion of the TT. The estimated rate of carbohydrate oxidation was not different during the first 90 min of exercise but thereafter was reduced (P < 0.05) in P and was maintained in both C and C+M. These data demonstrate that carbohydrate ingestion during exercise improves 100-km TT performance compared with a sweet placebo, but the addition of MCT does not provide any further performance enhancement.  相似文献   

6.
Timothy Noakes 《Journal of applied physiology》2004,96(3):1243; author reply 1243-1243; author reply 1244
  相似文献   

7.
Brain serotonin (5-hydroxytryptamine, 5-HT) has been suggested to be involved in central fatigue during prolonged exercise. Changes in the ratio of plasma free tryptophan (free Trp) to branched-chain amino acids (BCAA) are associated with altered brain 5-HT synthesis. The purposes of this study were to describe systematically the effects of prolonged exercise on changes in plasma free Trp and BCAA and to examine the effects of carbohydrate (CHO) feedings on these same variables. Eight well-trained men [VO2max = 57.8 (SE 4.1) ml kg-1 min-1] cycled for up to 255 min at a power output corresponding to VO2 at lactate threshold (approximately 68% VO2max) on three occasions separated by at least 1 week. Subjects drank 5 ml kg-1 body wt-1 of either a water placebo, or a liquid beverage containing a moderate (6% CHO) or high (12% CHO) concentration of carbohydrate beginning at min 14 of exercise and every 30 min thereafter. Exercise time to fatigue was shorter in subjects receiving placebo [190 (SE 4) min] as compared to 6% CHO [235 (SE 10) min] and 12% CHO [234 (SE 9) min] (P < 0.05). Glucose and insulin decreased in the placebo group, and free Trp, free-Trp/BCAA, and free fatty acids increased approximately five- to sevenfold (P < 0.05). These changes were attenuated in a dose-related manner by the carbohydrate drinks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To study the effects of carbohydrate (CHO) supplementation on performance changes and symptoms of overreaching, six male endurance cyclists completed 1 wk of normal (N), 8 days of intensified (ITP), and 2 wk of recovery training (R) on two occasions in a randomized crossover design. Subjects completed one trial with a 6% CHO solution provided before and during training and a 20% solution in the 1 h postexercise (H-CHO trial). On the other occasion, subjects consumed a 2% CHO solution at the same time points (L-CHO). A significant decline in time to fatigue at approximately 63% maximal power output (H-CHO: 17 +/- 3%; L-CHO: 26 +/- 7%) and a significant increase in mood disturbance occurred in both trials after ITP. The decline in performance was significantly greater in the L-CHO trial. After ITP, a significant decrease in estimated muscle glycogen oxidation (H-CHO: N 49.3 +/- 2.9 kcal/30 min, ITP 32.6 +/- 3.4 kcal/30 min; L-CHO: N 49.1 +/- 30 kcal/30 min, ITP 39.0 +/- 5.6 kcal/30 min) and increase in fat oxidation (H-CHO: N 16.3 +/- 2.4 kcal/30 min, ITP 27.8 +/- 2.3 kcal/30 min; L-CHO: N 16.9 +/- 2.6 kcal/30 min, ITP: 25.4 +/- 3.5 kcal/30 min) occurred alongside significant increases in glycerol and free fatty acids and decreases in free triglycerides in both trials. An interaction effect was observed for submaximal plasma concentrations of cortisol and epinephrine, with significantly greater reductions in these stress hormones in L-CHO compared with H-CHO after ITP. These findings suggest that CHO supplementation can reduce the symptoms of overreaching but cannot prevent its development. Decreased endocrine responsiveness to exercise may be implicated in the decreased performance and increased mood disturbance characteristic of overreaching.  相似文献   

9.
The purpose of this investigation was to determine the effects of 2.5 hours of cycling with and without carbohydrate supplementation on gross efficiency (GE). Trained cyclists (N = 15) were tested for V(.-)O2max (53.6 + 2.2 ml x kg(-1) x min(-1)) and lactate threshold during incremental tests to exhaustion. On 2 separate visits, cyclists performed 2.5 hours of cycling on an indoor trainer. A carbohydrate (C) or placebo (P) beverage was randomly provided and counterbalanced for each of the trials. Gross efficiency, cycling economy, power output, V(.-)O2, lactate, and blood glucose were measured every 20 minutes during the 2.5-hour ride. Muscle glycogen was measured immediately before and after the ride from the vastus lateralis. Results indicated that power output and V(.-)O2 decreased over time (p < 0.05) but were not different between trials. Relative GE and cycling economy during C were greater than P at 40 and 150 minutes (p < 0.05). Blood glucose significantly decreased in P and was lower than C at all time points (p < 0.05). Respiratory exchange ratio decreased over time in both trials, with a significant treatment effect at 40 and 150 minutes (p < 0.05). Muscle glycogen decreased by 65% during both conditions (p < 0.05) but demonstrated no treatment effect. We conclude that carbohydrate supplementation during 2.5 hours of cycling attenuated the decrease in GE possibly by maintaining blood glucose levels. This suggests that the positive effect of carbohydrate supplementation on endurance performance may be through the maintenance of metabolic efficiency.  相似文献   

10.
Eight endurance-trained men cycled to volitional exhaustion at 69 +/- 1% peak oxygen uptake on two occasions to examine the effect of carbohydrate supplementation during exercise on muscle energy metabolism. Subjects ingested an 8% carbohydrate solution (CHO trial) or a sweet placebo (Con trial) in a double-blind, randomized order, with vastus lateralis muscle biopsies (n = 7) obtained before and immediately after exercise. No differences in oxygen uptake, heart rate, or respiratory exchange ratio during exercise were observed between the trials. Exercise time to exhaustion was increased by approximately 30% when carbohydrate was ingested [199 +/- 21 vs. 152 +/- 9 (SE) min, P < 0.05]. Plasma glucose and insulin levels during exercise were higher and plasma free fatty acids lower in the CHO trial. No differences between trials were observed in the decreases in muscle glycogen and phosphocreatine or the increases in muscle lactate due to exercise. Muscle ATP levels were not altered by exercise in either trial. There was a small but significant increase in muscle inosine monophosphate levels at the point of exhaustion in both trials, and despite the subjects in CHO trial cycling 47 min longer, their muscle inosine monophosphate level was significantly lower than in the Con trial (CHO: 0.16 +/- 0.08, Con: 0.23 +/- 0.09 mmol/kg dry muscle). These data suggest that carbohydrate ingestion may increase endurance capacity, at least in part, by improving muscle energy balance.  相似文献   

11.
12.
Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.  相似文献   

13.
The aim of this study was to examine whether the alkalosis-induced improvement in supramaximal performance could be explained by a less-altered muscle metabolic status. Eight subjects first performed exhausting exercise at 120% peak oxygen uptake after ingesting either a placebo (PLC) or sodium citrate (CIT) at a dose of 0.5 g · kg−1 body mass to determine exhaustion time (t exh). They then, performed exercise (Lim-EX) at the same relative intensity lasting PLCt exh minus 20 s in both treatments. Samples were taken from vastus lateralis muscle at rest (90-min after the ingestion) and at the end of Lim-EX. Arterial blood samples were obtained at rest (immediately prior to and 90 min after ingesting the drug) and during the 20-min post-exercise recovery. The t exh was significantly increased by CIT [PLC 258 (SD 29) s, CIT 297 (SD 45) s]. The CIT raised the rest [citrate] in blood [PLC 0.11 (SD 0.01) mmol · l−1, CIT 0.34 (SD 0.07) mmol · l−1] and in muscle [PLC 0.78 (SD 0.23) mmol · kg−1 dry mass, CIT 1.00 (SD 0.21) mmol · kg−1 dry mass]. Resting muscle pH and buffering capacity were unchanged by CIT. The same fall in muscle pH was observed during Lim-EX in the two conditions. This was associated with similar variations in both the cardio-respiratory response and muscle energy and metabolism status in spite of a better blood acid-base status after CIT. Thus, CIT would not seem to allow the alkalinization of the muscle cytosolic compartment. Though sodium citrate works in a similar way to NaHCO3 on plasma alkalinization and exercise performance, the exact nature of the mechanisms involved in the delay of exhaustion could be different and remains to be elucidated. Accepted: 26 November 1996  相似文献   

14.
Summary The effects of a high carbohydrate diet on the renal gluconeogenic and glycolytic capacities and on the activities of the main enzymes of the carbohydrate metabolism, fructose 1,6-bisphosphatase, phosphofructokinase and pyruvate kinase have been studied. These parameters have been analysed in two separate and isolated fractions of the renal tubule, the proximal convoluted (PCT) and the distal convoluted (DCT) zones. The results presented in this study show a rapid adaptation capacity of the kidney in response to the high amount of dietary carbohydrate, which are characterized by a decrease in the glucose production and fructose 1,6-bisphosphatase activity in the proximal tubules, and an increase in the glycolytic flux and phosphofructokinase and pyruvate kinase activities in the distal tubules. The changes in these enzyme activities took place only at subsaturating substrate concentrations and not at maximum velocity which suggest that they are probably due to an allosteric and/or covalent modifications and so, they are independent of variations in the cellular levels of the enzymes.  相似文献   

15.
Summary The adaptive response of renal metabolism of glucose was studied in isolated rat proximal and distal renal tubules after a high protein-low carbohydrate diet administration. This nutritional situation significantly stimulated the gluconeogenic activity in the renal proximal tubules (about 1.5 fold at 48 hours) due, in part, to a marked increase in the fructose 1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) activities. In this tubular fragment, FBPase activity increased only at subsaturating fructose 1,6-bisphosphate concentration (30% at 48 hours) which involved a significant decrease in the Km (31%) for its substrate without changes in the Vmax. This enzymatic behaviour is probably related to modifications in the activity of the enzyme already present in the renal cells. Proximal PEPCK activity progressively increased at all substrate concentrations (almost 2 fold at 48h of high protein diet) which brought about changes in Vmax without changes in Km. These changes are in agreement with variations in the cellular concentration of the enzyme. Neither gluconeogenesis nor the gluconeogenic enzymes changed in the distal fractions of the renal tubules. On the other hand, a high protein diet did not apparently modify the glycolytic ability in any fragment of the nephron, although a significant increase in the phosphofructokinase (PFK) and pyruvate kinase (PK) activities was found in the distal renal tubules. This short term regulation involved a significant decrease from 24 hours in the Km value of distal PFK (almost 40%) without changes in Vmax. The kinetic behaviour of distal PK was mixed. In the first 24h after high protein diet a significant decrease in the Km for phosphoenolpyruvate was found (30%) without variation in the Vmax, however during the second 24 hours the activity of this glycolytic enzyme increased significantly (almost 1.3 fold) without modifications in its Km value. On the contrary, this nutritional state did not modify the kinetic behaviour of any glycolytic enzyme in the proximal regions of the renal tubules.  相似文献   

16.
Metabolic effects of an overnight fast (postabsorptive state, PA) or a 3.5-day fast (fasted state, F) were compared in eight healthy young men at rest and during exercise to exhaustion at 45% maximum O2 uptake. Glucose rate of appearance (Ra) and disappearance (Rd) were calculated from plasma glucose enrichment during a primed, continuous infusion of [6,6-2H]glucose. Serum substrates and insulin levels were measured and glycogen content of the vastus lateralis was determined in biopsies taken before and after exercise. At rest, whole-body glucose flux (determined by the deuterated tracer) and carbohydrate oxidation (determined from respiratory exchange ratio) were lower in F than PA, but muscle glycogen levels were similar. During exercise, glucose flux, whole-body carbohydrate oxidation, and the rate of muscle glycogen utilization were significantly lower during the fast. In the PA state, glucose Ra and Rd increased together throughout exercise. However, in the F state Ra exceeded Rd during the 1st h of exercise, causing an increase in plasma glucose to levels similar to those of the PA state. The increase in glucose flux was markedly less throughout F exercise. Lower carbohydrate utilization in the F state was accompanied by higher circulating fatty acids and ketone bodies, lower plasma insulin levels, and the maintenance of physical performance reflected by similar time to exhaustion.  相似文献   

17.
The effects of menstrual cycle phase and carbohydrate (CHO) supplementation were investigated during prolonged exercise. Nine healthy, moderately trained women cycled at 70% peak O(2) consumption until exhaustion. Two trials were completed during the follicular (Fol) and luteal (Lut) phases of the menstrual cycle. Subjects consumed 0.6 g CHO. kg body wt(-1). h(-1) (5 ml/kg of a 6% CHO solution every 30 min beginning at min 30 of exercise) or a placebo drink (Pl) during exercise. Time to exhaustion during CHO increased from Pl values (P < 0.05) by 14.4 +/- 8.5 (Fol) and 11.4 +/- 7.1% (Lut); no differences were observed between menstrual cycle phases. CHO attenuated (P < 0.05) the decrease in plasma glucose and insulin and the increase in plasma free fatty acids, tryptophan, epinephrine, and cortisol observed during Pl for both phases. Plasma alanine, glutamine, proline, and isoleucine were lower (P < 0.05) in Lut than in Fol phase. CHO resulted in lower (P < 0.05) plasma tyrosine, valine, leucine, isoleucine, and phenylalanine. These results indicate that the menstrual cycle phase does not alter the effects of CHO supplementation on performance and plasma levels of related substrates during prolonged exercise.  相似文献   

18.
The present study was undertaken to examine the effect of carbohydrate ingestion on plasma and muscle ammonia (NH(3) denotes ammonia and ammonium) accumulation during prolonged exercise. Eleven trained men exercised for 2 h at 65% peak pulmonary oxygen consumption while ingesting either 250 ml of an 8% carbohydrate-electrolyte solution every 15 min (CHO) or an equal volume of a sweet placebo. Blood glucose and plasma insulin levels during exercise were higher in CHO, but plasma hypoxanthine was lower after 120 min (1.7 +/- 0.3 vs. 2.6 +/- 0.1 micromol/l; P < 0. 05). Plasma NH(3) levels were similar at rest and after 30 min of exercise in both trials but were lower after 60, 90, and 120 min of exercise in CHO (62 +/- 9 vs. 76 +/- 9 micromol/l; P < 0.05). Muscle NH(3) levels were similar at rest and after 30 min of exercise but were lower after 120 min of exercise in CHO (1.51 +/- 0.21 vs. 2.07 +/- 0.23 mmol/kg dry muscle; P < 0.05; n = 5). These data are best explained by carbohydrate ingestion reducing muscle NH(3) production from amino acid degradation, although a small reduction in net AMP catabolism within the contracting muscle may also make a minor contribution to the lower tissue NH(3) levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号