首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu B  Raeth T  Beuerle T  Beerhues L 《Planta》2007,225(6):1495-1503
Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.  相似文献   

2.
DpgA is a bacterial type III polyketide synthase (PKS) that decarboxylates and condenses four malonyl-CoA molecules to produce 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) in the biosynthetic pathway to 3,5-dihydroxyphenylglycine, a key nonproteinogenic residue in the vancomycin family of antibiotics. DpgA has the conserved catalytic triad of Cys/His/Asn typical of type III PKS enzymes, and has been assumed to use Cys160 as the catalytic nucleophile to create a series of elongating acyl-S-enzyme intermediates prior to the C(8) to C(3) cyclization step. Incubation of purified DpgA with [(14)C]-malonyl-CoA followed by acid quench during turnover leads to accumulation of 10-15% of the DpgA molecules covalently acylated. Mutation of the active site Cys160 to Ala abrogated detectable covalent acylation, but the C160A mutant retained 50% of the V(max) for DPA-CoA formation, with a k(cat) still at 0.5 catalytic turnovers/min. For comparison, a C190A mutant retained wild-type activity, while the H296A mutant, in which the side chain of the presumed catalytic His is removed, had a 6-fold drop in k(cat). During turnover, purified DpgA produced 1.2 equivalents of acetyl-CoA for each DPA-CoA, indicating 23% uncoupled decarboxylation competing with condensative C-C coupling. The C160A mutant showed an increased partition ratio for malonyl-CoA decarboxylation to acetyl-CoA vs condensation to DPA-CoA, reflecting more uncoupling in the mutant enzyme. The Cys-to-Ala mutant thus shows the unexpected result that, when the normal acyl-S-enzyme mechanism for this type III PKS elongation/cyclization catalyst is removed, it can still carry out the regioselective construction of the eight-carbon DPA-CoA skeleton with surprising efficiency.  相似文献   

3.
The dehydratases (DHs) of modular polyketide synthases (PKSs) catalyze dehydrations that occur frequently in the biosynthesis of complex polyketides, yet little is known about them structurally or mechanistically. Here, the structure of a DH domain, isolated from the fourth module of the erythromycin PKS, is presented at 1.85 Å resolution. As with the DH of the highly related animalian fatty acid synthase, the DH monomer possesses a double-hotdog fold. Two symmetry mates within the crystal lattice make a contact that likely represents the DH dimerization interface within an intact PKS. Conserved hydrophobic residues on the DH surface indicate potential interfaces with two other PKS domains, the ketoreductase and the acyl carrier protein. Mutation of an invariant arginine at the hypothesized acyl carrier protein docking site in the context of the erythromycin PKS resulted in decreased production of the erythromycin precursor 6-deoxyerythronolide B. The structure elucidates how the α-hydrogen and β-hydroxyl group of a polyketide substrate interact with the catalytic histidine and aspartic acid in the DH active site prior to dehydration.  相似文献   

4.
植物聚酮类化合物主要包括酚类、芪类及类黄酮化合物等,在植物花色、防止紫外线伤害、预防病原菌、昆虫危害以及作为植物与环境互作信号分子方面行使着重要的生物学功能。该类化合物具有显著多样的生物学活性,对人体保健及疾病治疗有显著意义。植物类型III 聚酮化合物合酶 (PKS) 在该类化合物生物合成起始反应中行使着关键作用,决定该类化合物基本分子骨架建成和代谢途径碳硫走向,为合成途径关键酶和限速酶。以查尔酮合酶为原型酶的植物类型III PKS超家族是研究系统进化和蛋白结构与功能关系的模式分子家族,目前已经分离得到14种植物类型III PKS基因,这些同祖同源基因及其表达产物既有共性,也表现出许多独特个性,这些个性赋予此类次生代谢产物结构上的多样性。以下综述了植物类型III PKS超家族基因结构、功能及代谢产物研究进展。  相似文献   

5.
Type III polyketide synthases (PKSs) are the condensing enzymes that catalyze the formation of a myriad of aromatic polyketides in plant, bacteria, and fungi. Here we report the cloning and characterization of a putative type III PKS from Aspergillusniger, AnPKS. This enzyme catalyzes the synthesis of alkyl pyrones from C2 to C18 starter CoA thioesters with malonyl-CoA as an extender CoA through decaboxylative condensation and cyclization. It displays broad substrate specificity toward fatty acyl-CoA starters to yield triketide and tetraketide pyrones, with benzoyl-CoA as the most preferred starter. The optimal temperature and pH of AnPKS are 50°C and 8, respectively. Under optimal conditions, the enzyme shows the highest catalytic efficiency (k(cat)/K(m)) of 7.4×10(5)s(-1)M(-1) toward benzoyl-CoA. Homology modeling and site-directed mutagenesis were used to probe the molecular basis of its substrate specificity. This study should open doors for further engineering of AnPKS as a biocatalyst for synthesis of value-added polyketides.  相似文献   

6.
To isolate cDNAs involved in the biosynthesis of acetate-derived naphthoquinones in Drosophyllum lusitanicum, an expressed sequence tag analysis was performed. RNA from callus cultures was used to create a cDNA library from which 2004 expressed sequence tags were generated. One cDNA with similarity to known type III polyketide synthases was isolated as full-length sequence and termed DluHKS. The translated polypeptide sequence of DluHKS showed 51-67% identity with other plant type III PKSs. Recombinant DluHKS expressed in Escherichia coli accepted acetyl-coenzyme A (CoA) as starter and carried out sequential decarboxylative condensations with malonyl-CoA yielding α-pyrones from three to six acetate units. However, naphthalenes, the expected products, were not isolated. Since the main compound produced by DluHKS is a hexaketide α-pyrone, and the naphthoquinones in D. lusitanicum are composed of six acetate units, we propose that the enzyme provides the backbone of these secondary metabolites. An involvement of accessory proteins in this biosynthetic pathway is discussed.  相似文献   

7.
8.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

9.
A cDNA encoding a novel plant type III polyketide synthase was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae). The deduced amino acid sequence of Hu. serrata polyketide synthase 1 showed 44-66% identity to those of other chalcone synthase superfamily enzymes of plant origin. Further, phylogenetic tree analysis revealed that Hu. serrata polyketide synthase 1 groups with other nonchalcone-producing type III polyketide synthases. Indeed, a recombinant enzyme expressed in Escherichia coli showed unusually versatile catalytic potential to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, it is remarkable that the enzyme accepted bulky starter substrates such as 4-methoxycinnamoyl-CoA and N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 4-methoxy-2',4',6'-trihydroxychalcone and 1,3-dihydroxy-N-methylacridone, respectively. In contrast, regular chalcone synthase does not accept these bulky substrates, suggesting that the enzyme has a larger starter substrate-binding pocket at the active site. Although acridone alkaloids have not been isolated from Hu. serrata, this is the first demonstration of the enzymatic production of acridone by a type III polyketide synthase from a non-Rutaceae plant. Interestingly, Hu. serrata polyketide synthase 1 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae).  相似文献   

10.
Uroporphyrinogen III synthase, U3S, the fourth enzyme in the porphyrin biosynthetic pathway, catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrino gen III, which is used in several different pathways to form heme, siroheme, chlorophyll, F(430) and vitamin B(12). U3S activity is essential in all organisms, and decreased activity in humans leads to the autosomal recessive disorder congenital erythropoetic porphyria. We have determined the crystal structure of recombinant human U3S at 1.85 A resolution. The protein folds into two alpha/beta domains connected by a beta-ladder. The active site appears to be located between the domains, and variations in relative domain positions observed between crystallographically independent molecules indicates the presence of flexibility that may be important in the catalytic cycle. Possible mechanisms of catalysis were probed by mutating each of the four invariant residues in the protein that have titratable side chains. Additionally, six other highly conserved and titratable side chains were also mutated. In no case, however, did one of these mutations abolish enzyme activity, suggesting that the mechanism does not require acid/base catalysis.  相似文献   

11.
We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA).  相似文献   

12.
13.
Type III polyketide synthases (PKSs) are responsible for aromatic polyketide synthesis in plants and bacteria. Genome analysis of filamentous fungi has predicted the presence of fungal type III PKSs, although none have thus far been functionally characterized. In the genome of Neurospora crassa, a single open reading frame, NCU04801.1, annotated as a type III PKS was found. In this report, we demonstrate that NCU04801.1 is a novel type III PKS catalyzing the synthesis of pentaketide alkylresorcylic acids. NCU04801.1, hence named 2'-oxoalkylresorcylic acid synthase (ORAS), preferred stearoyl-CoA as a starter substrate and condensed four molecules of malonyl-CoA to give a pentaketide intermediate. For ORAS to yield pentaketide alkylresorcylic acids, aldol condensation and aromatization of the intermediate, which is still attached to the enzyme, are presumably followed by hydrolysis for release of the product as a resorcylic acid. ORAS is the first type III PKS that synthesizes pentaketide resorcylic acids.  相似文献   

14.
Recent literature on polyketide biosynthesis suggests that polyketide synthases have much greater diversity in both mechanism and structure than the current type I, II and III paradigms. These examples serve as an inspiration for searching novel polyketide synthases to give new insights into polyketide biosynthesis and to provide new opportunities for combinatorial biosynthesis.  相似文献   

15.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

16.
The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.

Phylogenetic and syntenic analyses of whole genome data reveal that macroevolution of the type III polyketide synthase superfamily is mainly governed by whole-genome duplications and triplications.  相似文献   

17.
Streptomyces coelicolor RppA (Sc-RppA), a bacterial type III polyketide synthase, utilizes malonyl-CoA as both starter and extender unit substrate to form 1,3,6,8-tetrahydroxynaphthalene (THN) (therefore RppA is also known as THN synthase (THNS)). The significance of the active site Tyr(224) for substrate specificity has been established previously, and its aromatic ring is believed to be essential for RppA to select malonyl-CoA as starter unit. Herein, we describe a series of Tyr(224) mutants of Sc-RppA including Y224F, Y224L, Y224C, Y224M, and Y224A that were able to catalyze a physiological assembly of THN, albeit with lower efficiency, challenging the necessity for the Tyr(224) aromatic ring. Steady-state kinetics and radioactive substrate binding analysis of the mutant enzymes corroborated these unexpected results. Functional examination of the Tyr(224) series of RppA mutants using diverse unnatural acyl-CoA substrates revealed the unique role of malonyl-CoA as starter unit substrate for RppA, leading to the development of a novel stericelectronic constraint model.  相似文献   

18.
Curcuminoids, major components of the spice turmeric, are used as a traditional Asian medicine and a food additive. Curcumin, a representative curcuminoid, has received a great deal of attention because of its anti-inflammatory, anticarcinogenic, and antitumor activities. Here we report a novel type III polyketide synthase named curcuminoid synthase from Oryza sativa, which synthesizes bisdemethoxycurcumin via a unique mechanism from two 4-coumaroyl-CoAs and one malonyl-CoA. The reaction begins with the thioesterification of the thiol moiety of Cys-174 by a starter molecule, 4-coumaroyl-CoA. Decarboxylative condensation of the first extender substrate, malonyl-CoA, onto the thioester of 4-coumarate results in the formation of a diketide-CoA intermediate. Subsequent hydrolysis of the intermediate yields a beta-keto acid, which in turn acts as the second extender substrate. The beta-keto acid is then joined to the Cys-174-bound 4-coumarate by decarboxylative condensation to form bisdemethoxycurcumin. This reaction violates the traditional head-to-tail model of polyketide assembly; the growing diketide intermediate is hydrolyzed to a beta-keto acid that subsequently serves as the second extender to form curcuminoids. Curcuminoid synthase appears to be capable of the synthesis of not only diarylheptanoids but also gingerol analogues, because it synthesized cinnamoyl(hexanoyl)methane, a putative intermediate of gingerol, from cinnamoyl-CoA and 3-oxo-octanoic acid.  相似文献   

19.
PhlD, a type III polyketide synthase from Pseudomonas fluorescens, catalyzes the synthesis of phloroglucinol from three molecules of malonyl-CoA. Kinetic analysis by direct measurement of the appearance of the CoASH product (k(cat) = 24 +/- 4 min(-1) and Km = 13 +/- 1 microM) gave a k(cat) value more than an order of magnitude higher than that of any other known type III polyketide synthase. PhlD exhibits broad substrate specificity, accepting C4-C12 aliphatic acyl-CoAs and phenylacetyl-CoA as the starters to form C6-polyoxoalkylated alpha-pyrones from sequential condensation with malonyl-CoA. Interestingly, when primed with long chain acyl-CoAs, PhlD catalyzed extra polyketide elongation to form up to heptaketide products. A homology structural model of PhlD showed the presence of a buried tunnel extending out from the active site to assist the binding of long chain acyl-CoAs. To probe the structural basis for the unusual ability of PhlD to accept long chain acyl-CoAs, both site-directed mutagenesis and saturation mutagenesis were carried out on key residues lining the tunnel. Three mutations, M21I, H24V, and L59M, were found to significantly reduce the reactivity of PhlD with lauroyl-CoA while still retaining its physiological activity to synthesize phloroglucinol. Our homology modeling and mutational studies indicated that even subtle changes in the tunnel volume could affect the ability of PhlD to accept long chain acyl-CoAs. This suggested novel strategies for combinatorial biosynthesis of unnatural pharmaceutically important polyketides.  相似文献   

20.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号