首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  1. Previous studies have demonstrated that phenotypic traits of plants have the potential to affect interactions between herbivores and their natural enemies. Consequently, the impact of natural enemies on herbivore vital rates and population dynamics may vary among plant species. This study was designed to investigate the potential for density-dependent parasitism of an aphid herbivore feeding on six different host plant species.
2. Population densities of the aphid Aphis nerii B de F (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) were recorded within a single growing season on six different species of milkweed in the genus Asclepias L. (Asclepiadaceae). Asclepias species are known to vary in their quality as food for herbivores. Although data on plant quality were not available in this study, population data were analysed to determine the effects of different Asclepias species on rates of parasitism and aphid population growth.
3. Parasitism rates of A. nerii varied among Asclepias species but were temporally density dependent over at least some range of aphid density on all plant species. Aphid population growth rates also varied among Asclepias species, and declined with an increase in the maximum parasitism rates among plant species; however, in no case was density-dependent parasitism sufficient to prevent exponential population growth of aphids within the growing season. The results serve to emphasise that, if natural enemies are to regulate herbivore populations, density-dependent mortality is a necessary, but not sufficient, condition for regulation.  相似文献   

2.
Parasites and hosts live in communities consisting of many interacting species, but few studies have examined how communities affect parasite virulence and transmission. We studied a food web consisting of two species of milkweed, two milkweed herbivores (monarch butterfly and oleander aphid) and a monarch butterfly-specific parasite. We found that the presence of aphids increased the virulence and transmission potential of the monarch butterfly's parasite on one milkweed species. These increases were associated with aphid-induced decreases in the defensive chemicals of milkweed plants. Our experiment suggests that aphids can indirectly increase the virulence and transmission potential of monarch butterfly parasites, probably by altering the chemical composition of a shared food plant. These results indicate that species that are far removed from host-parasite interactions can alter such interactions through cascading indirect effects in the food web. As such, indirect effects within ecological communities may drive the dynamics and evolution of parasites.  相似文献   

3.
The evolution of plant defense traits has traditionally been explained trough the “coevolutionary arms race” between plants and herbivores. According to this, specialist herbivores have evolved to cope effectively with the defensive traits of their host plants and may even use them as a cue for host location. We analyzed the geographic association between leaf trichomes, two tropane alkaloids (putative resistance traits), and leaf damage by herbivores in 28 populations of Datura stramonium in central Mexico. Since the specialist leaf beetles Epitrix parvula and Lema trilineata are the main herbivores of D. stramonium in central Mexico, we predicted a positive association between plant defense and leaf damage across populations. Also, if physical environmental conditions (temperature or precipitation) constrain the expression of plant defense, then the geographic variation in leaf damage should be explained partially by the interaction between defensive traits and environmental factors. Furthermore, we studied the temporal and spatial variation in leaf trichome density and leaf damage in five selected populations of D. stramonium sampled in two periods (1997 vs. 2007). We found a positive association between leaf trichomes density and atropine concentration with leaf damage across populations. The interaction between defensive traits and water availability in each locality had a significant effect on the geographic variation in leaf damage. Differences among populations in leaf trichome density are maintained over time. Our results indicate that local plant–herbivore interaction plays an important role in shaping the geographic and temporal variation in plant defense in D. stramonium.  相似文献   

4.
Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO(2) exchange (GEE) and net ecosystem CO(2) exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations.  相似文献   

5.
In this study, we examined the independent and interactive effects of temperature and water availability on the growth and foliar traits of common milkweed (Asclepias syriaca) and performance of a specialist herbivore, larvae of the monarch butterfly (Danaus plexippus). Milkweed from multiple population sources collected across a latitudinal gradient in Wisconsin, USA, were grown under all combinations of ambient or elevated temperature and the presence or absence of periodic water stress. Elevated temperature marginally increased, while water stress decreased plant growth. Milkweed from more northerly latitudes experienced larger growth responses to elevated temperature and were more resistant to water stress, especially under higher temperatures. Elevated temperature and water stress also altered milkweed composite foliar trait profiles. Elevated temperature generally increased leaf nitrogen and structural compounds, and decreased leaf mass per area. Water stress also elevated foliar nitrogen, but reduced defensive traits. Monarch larvae performed well on milkweed under elevated temperature and water stress, but gained the most mass on plants exposed to both treatments in combination. Our findings suggest that milkweed populations from more northerly latitudes in the upper Midwest may benefit more from rising temperatures than those in southerly locations, but that these beneficial effects depend on water availability. Monarch larvae grew larger on plants from all experimental treatments relative to ambient condition controls, indicating that future changes in milkweed presence on the landscape will likely influence monarch populations more than the effects of future changes in plant quality on larval performance.  相似文献   

6.
Interactions between plants and herbivorous insects have been models for theories of specialization and co‐evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed‐specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole‐body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP‐glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.  相似文献   

7.
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.  相似文献   

8.
Microbial endosymbionts alter the phenotype of their host which may have cascading effects at both population and community levels. However, we currently lack information on whether the effects of viruses on both host phenotypic traits and host population demography can modify interactions with upper trophic levels. To fill this gap, we investigated whether a prevalent densovirus infecting the aphid Myzus persicae (i.e. MpDNV) can modify trophic interactions between host aphids and their natural enemies (i.e. predators and parasitoids) by influencing aphid phenotypic traits (i.e. body mass and defensive behaviours), population demography (i.e. density and age-structure) and susceptibility towards both predation and parasitism. We found that the virus decreased aphid body mass but did not influence their behavioural defences. At the population level, the virus had a minor effect on aphid adult mortality whereas it strongly reduced the density of nymphs and influenced the stage structure of aphid populations. In addition, the virus enhanced the susceptibility of aphids to parasitism regardless of the parasitoid species. Predation rate on adult aphids was not influenced by the virus but ladybeetle predators strongly decreased the number of aphid nymphs, especially for uninfected ones compared to infected ones. As a result, the virus decreased predator effect on aphid populations. By reducing both aphid quality and availability, increasing their susceptibility to parasitism, and modulating predator effect on aphid populations, we highlighted that viral endosymbionts can be prevalent drivers of their host ecology as they modify their phenotypes and interspecific interactions. These virus-mediated ecological effects may have consequences on enemies foraging strategies as well as trophic webs dynamics and structure.  相似文献   

9.
Abstract 1. Anthropogenic increases in nitrogen deposition are impacting terrestrial ecosystems worldwide. While some of the direct ecosystem‐level effects of nitrogen deposition are understood, the effects of nitrogen deposition on plant–insect interactions and on herbivore population dynamics have received less attention. 2. Nitrogen deposition will potentially influence both plant resource availability and herbivore population growth. If increases in herbivore population growth outstrip increases in resource availability, then increases in the strength of density dependence expressed within the herbivore population would be predicted. Alternatively, if plant resources respond more vigorously to nitrogen deposition than do herbivore populations, a decline in the strength of density dependence would be expected. No change in the strength of density dependence acting upon the herbivore population would suggest equivalent responses by herbivores and plants. 3. A density manipulation experiment was performed to examine the effect of nitrogen deposition on the interaction between a host plant, Asclepias tuberosa, and its herbivore, Aphis nerii. Aphid maximum per capita growth rate (Rmax), carrying capacity (K), and the strength of density dependence were measured under three nitrogen deposition treatments. The effect of nitrogen deposition on the relationship among these three measures of insect population dynamics was explored. 4. Simulated nitrogen deposition increased aphid per capita population growth, plant foliar nitrogen concentrations, and plant biomass. Nitrogen deposition caused Rmax and K to increase proportionally, leading to no overall change in the strength of density dependence. In this system, potential changes in the negative feedback processes operating on herbivore populations following nitrogen deposition appear to be buffered by concomitant changes in resource availability.  相似文献   

10.
1. Although both endogenous and exogenous processes regulate populations, the current understanding of the contributions from density dependence and climate to the population dynamics of eruptive herbivores remains limited. 2. Using a 17‐year time series of three cereal aphid species [Rhopalosiphum padi L., Metopolophium dirhodum (Walker), and Diuraphis noxia (Kurdumov)] compiled from a trapping network spanning the northwestern U.S.A., temporal and spatial patterns associated with population fluctuations, and modelled density dependence in aphid abundances were tested. These models were used to analyse correlations between climate and aphid abundances in the presence and absence of residual variance as a result of density‐dependent effects. 3. The temporal dynamics of aphid population fluctuations indicated periodicity, with no clear evidence for a spatial pattern underlying population fluctuations. 4. Aphid abundances oscillated in a manner consistent with delayed density dependence for all three aphid species, although the strength of these feedbacks differed among species. 5. Diuraphis noxia abundances were negatively correlated with increasing temperatures in the absence of density‐dependent effects, whereas M. dirhodum abundances were positively correlated with increasing cumulative precipitation in the presence of density‐dependent effects; yet, R. padi abundances were unrelated to climate variables irrespective of population feedbacks. 6. Our analysis suggests that endogenous feedbacks differentially regulate aphid populations in the northwestern U.S.A., and these feedbacks may operate at an expansive spatial scale. It is concluded that the contributions of density dependence and climate to aphid population dynamics are species‐specific in spite of similar ecological niches, with implications for assessing species responses to climate variability.  相似文献   

11.
Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest – the green peach aphid (Myzus persicae) – growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual‐based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics.  相似文献   

12.
The means by which plant genotypes influence species interactions and arthropod community structure remain poorly understood. One potential, but largely unstudied mechanism is that occurring through plant genetic variation in induced responses to herbivory. Here we test whether induced responses to leaf damage and genotypic variation for induction in Asclepias syriaca influence interactions among Formica podzolica ants, the ant‐tended aphid Aphis asclepiadis, and the untended aphid Myzocallis asclepiadis. In so doing, we assess genetic variation in plant‐mediated interactions among different herbivore guilds. We conducted a three‐way factorial field experiment manipulating plant genotype, leaf damage by specialist monarch caterpillars Danaus plexippus, and ant presence, and documented effects on aphid and ant abundances. Leaf damage increased Aphis abundance in both the presence and absence of ants and Myzocallis abundance under ant exclusion. In the presence of ants, leaf damage decreased Myzocallis abundance, likely due to effects on ant–Myzocallis interactions; ants showed a positive association with Myzocallis, leaf damage increased the strength of this association (425% more ants per aphid), and this in turn fed back to suppress Myzocallis abundance. Yet, these aggregate effects of leaf damage on Myzocallis and ants were underlain by substantial variation among milkweed geno types, with leaf damage inducing lower aphid and ant abundances on some genotypes, but higher abundances on others. As a consequence, a substantial fraction of the variation in leaf damage effects on ants (R2 =0.42) was explained by milkweed genetic variation in the strength and sign of leaf damage effects on Myzocallis. Although plant genetic variation influenced Aphis abundance, this did not translate into genetic variation in ant abundance, and leaf damage did not influence Aphis–ant interactions. Overall, we show that variation in induced responses to herbivory is a relevant condition by which plant genotype influences interactions in plant‐centered arthropod communities and provide novel results of effects on the third trophic level.  相似文献   

13.
Trophic cascades occur when predators benefit plants by consuming herbivores, but the overall strength of a trophic cascade depends upon the way species interactions propagate through a system. For example, plant resistance to, or tolerance of, herbivores reduces the potential magnitude of a trophic cascade. At the same time, plants can also affect predator foraging or consumption in ways that either increase or decrease the strength of trophic cascades. In this study, we investigated the effects of plant variation on cascade strength by manipulating predator access to aphid populations on two species of milkweed: the slower-growing, putatively more-defended Asclepias syriaca and the faster-growing, putatively less-defended Asclepias incarnata. Predatory insects increased plant growth and survival for both species, but the strength of these trophic cascades was greater on A. incarnata, which supported more aphid growth early in the season than did A. syriaca. More predators were observed per aphid on A. incarnata, and cage treatments generated significant patterns consistent with predator aggregation on A. incarnata, but not A. syriaca. Although predators strongly affected aphids, this effect did not differ consistently between milkweed species. Plant tolerance to herbivory may therefore be the primary driver of the difference in trophic cascade strength observed. Importantly, we observed that the timing of predator exclusion affected plant growth and survival differently, indicating that measures of “cascade strength” may change with phenology and plant physiological responses. Together, our results suggest a mechanism by which differences in resource allocation patterns could explain differences in growth, phenology, and cascade strength between species.  相似文献   

14.
Plant defensive traits drive patterns of herbivory and herbivore diversity among plant species. Over the past 30 years, several prominent hypotheses have predicted the association of plant defenses with particular abiotic environments or geographic regions. We used a strongly supported phylogeny of oaks to test whether defensive traits of 56 oak species are associated with particular components of their climatic niche. Climate predicted both the chemical leaf defenses and the physical leaf defenses of oaks, whether analyzed separately or in combination. Oak leaf defenses were higher at lower latitudes, and this latitudinal gradient could be explained entirely by climate. Using phylogenetic regression methods, we found that plant defenses tended to be greater in oak species that occur in regions with low temperature seasonality, mild winters, and low minimum precipitation, and that plant defenses may track the abiotic environment slowly over macroevolutionary time. The pattern of association we observed between oak leaf traits and abiotic environments was consistent with a combination of a seasonality gradient, which may relate to different herbivore pressures, and the resource availability hypothesis, which posits that herbivores exert greater selection on plants in resource-limited abiotic environments.  相似文献   

15.
Intrinsic population growth rate and density dependence are fundamental components of population dynamics. Theory suggests that variation in and correlations between these parameters among patches within a population can influence overall population size, but data on the degree of variation and correlation are rare. Replicate populations of a specialist aphid (Chaetosiphon fragaefolii) were followed on 11 genotypes of host plant (Fragaria chiloensis) in the greenhouse. Population models fit to these census data provide estimates of intrinsic growth rate and carrying capacity for aphid populations on each plant genotype. Growth rate and carrying capacity varied substantially among plant genotypes, and these two parameters were not significantly correlated. These results support the existence of spatial variation in population dynamic parameters; data on frequency distributions and correlations of these parameters in natural populations are needed for evaluation of the importance of variation in growth rate and density dependence for population dynamics in the field.  相似文献   

16.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

17.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

18.
《植物生态学报》2017,41(10):1033
Aims Plant-herbivore interaction is a hot topic in the study of biodiversity and ecosystem functions. Herbivores can negatively affect seedling growth and therefore can alter the dynamics of plant recruitment. However, previous studies do not fully reveal the relative importance of different plant functional traits on herbivory intensity and rarely link herbivory to the relative abundance of plant species.Methods Here, we measured 11 plant functional traits and the relative abundance of seedlings of 16 common woody species in the subtropical forests on 29 islands in Thousand Island Lake, East China. We then used multivariate regression and variance partitioning to test the contribution of functional traits and the relative abundance to interspecific differences of insect herbivory intensity.Important findings Our study found that both plant functional traits (e.g. carbon nitrogen ratio, leaf thickness) and the relative abundance of woody species played important roles in herbivory intensity, and they jointly contributed 54% of the variance of the interspecific differences. Among these factors, species with higher defensive ability, lower nutrient content and higher relative abundance had lower herbivory intensity. We suggest to consider both individual level traits (functional traits) and community level attributes (the relative abundance) in future herbivory studies.  相似文献   

19.
Abstract.  1. Experimental evidence is presented for positive, negative, and no density dependence from 32 independent density manipulations of milkweed aphids ( Aphis nerii ) in laboratory and field experiments. This substantial variation in intraspecific density dependence is associated with temperature and host-plant species.
2. It is reported that as population growth rate increases, density dependence becomes more strongly negative, suggesting that the monotonic definition of density dependence used in many common population models is appropriate for these aphids, and that population growth rate and carrying capacity are not directly proportional.
3. For populations that conform to these assumptions, population growth rate may be widely applicable as a predictor of the strength of density dependence.  相似文献   

20.
Slow-growing juveniles of shade-tolerant plant species are predicted to have tough leaves because of the high cost of leaf replacement in shade relative to potential carbon gain. We assessed the degree of correlated evolution among eight traits associated with leaf toughness and the relationships of those traits with the growth and mortality rates of 197 tree and shrub species from the understory of the 50-ha forest dynamics plot on Barro Colorado Island, Panama. Path analysis with phylogenetically independent contrasts revealed that leaves attained material toughness (resistance to fracture per unit fracture area) through increases in tissue density, percent cellulose per unit dry mass, and vein fracture toughness. Lamina density and cellulose content evolved independently and thus represent different paths to material toughness. Structural toughness (resistance to fracture per unit fracture length) depended on material toughness and lamina thickness. Mortality rates of individuals 1-10 cm in stem diameter were negatively correlated with material toughness and lamina density but were independent of structural toughness and cell wall fiber contents. Leaf toughness traits were uncorrelated with relative growth rates. Results imply that material toughness enhances resistance to natural enemies, which increases survival and offsets the biomass allocation cost of producing tough leaves in the shaded understory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号