首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca(2+) influx. As well as activating ATP-consuming processes, cytosolic Ca(2+) increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca(2+) transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca(2+) uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca(2+) and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca(2+) uniporter, MCU, is required for depolarisation-induced mitochondrial Ca(2+) increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na(+)-Ca(2+) exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca(2+) uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca(2+) accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.  相似文献   

2.
The uncoupling proteins UCP2 and UCP3 have been postulated to catalyze Ca(2+) entry across the inner membrane of mitochondria, but this proposal is disputed, and other, unrelated proteins have since been identified as the mitochondrial Ca(2+) uniporter. To clarify the role of UCPs in mitochondrial Ca(2+) handling, we down-regulated the expression of the only uncoupling protein of HeLa cells, UCP3, and measured Ca(2+) and ATP levels in the cytosol and in organelles with genetically encoded probes. UCP3 silencing did not alter mitochondrial Ca(2+) uptake in permeabilized cells. In intact cells, however, UCP3 depletion increased mitochondrial ATP production and strongly reduced the cytosolic and mitochondrial Ca(2+) elevations evoked by histamine. The reduced Ca(2+) elevations were due to inhibition of store-operated Ca(2+) entry and reduced depletion of endoplasmic reticulum (ER) Ca(2+) stores. UCP3 depletion accelerated the ER Ca(2+) refilling kinetics, indicating that the activity of sarco/endoplasmic reticulum Ca(2+) (SERCA) pumps was increased. Accordingly, SERCA inhibitors reversed the effects of UCP3 depletion on cytosolic, ER, and mitochondrial Ca(2+) responses. Our results indicate that UCP3 is not a mitochondrial Ca(2+) uniporter and that it instead negatively modulates the activity of SERCA by limiting mitochondrial ATP production. The effects of UCP3 on mitochondrial Ca(2+) thus reflect metabolic alterations that impact on cellular Ca(2+) homeostasis. The sensitivity of SERCA to mitochondrial ATP production suggests that mitochondria control the local ATP availability at ER Ca(2+) uptake and release sites.  相似文献   

3.
Chronic exposure to elevated free fatty acids (lipotoxicity) induces uncoupling protein (UCP2) in the pancreatic beta-cell, and therefore a causal link between UCP2 and beta-cell defects associated with obesity may exist. Recently, we showed that lipid treatment in vivo and in vitro in UCP2(-/-) mice/islets does not result in any loss in beta-cell glucose sensitivity. We have now assessed the mechanism of maintained beta-cell function in UCP2(-/-) mice by exposing islets to 0.4 mM palmitate for 48 h. Palmitate treatment increased triglyceride concentrations in wild type (WT) but not UCP2(-/-) islets because of higher palmitate oxidation rates in the UCP2(-/-) islets. Dispersed beta-cells from the palmitate-exposed WT islets had reduced glucose-stimulated hyperpolarization of the mitochondrial membrane potential compared with both control WT and palmitate-exposed UCP2(-/-) beta-cells. The glucose-stimulated increases in the ATP/ADP ratio and cytosolic Ca2+ are attenuated in palmitate-treated WT but not UCP2(-/-) beta-cells. Exposure to palmitate reduced glucose-stimulated insulin secretion (GSIS) in WT islets, whereas UCP2(-/-) islets had enhanced GSIS. Overexpression of recombinant UCP2 but not enhanced green fluorescent protein in beta-cells resulted in a loss of glucose-stimulated hyperpolarization of the mitochondrial membrane potential and GSIS similar to that seen in WT islets exposed to palmitate. Reactive oxygen species (ROS) are known to increase the activity of UCP2. We showed that ROS levels were elevated in control UCP2(-/-) islets as compared with WT and UCP2(-/-) islets overexpressing UCP2 and that palmitate increased ROS in WT and UCP2(-/-) islets overexpressing UCP2 but not in UCP2(-/-) islets. Thus, UCP2(-/-) islets resisted the toxic effects of palmitate by maintaining glucose-dependent metabolism-secretion coupling. We propose that higher free fatty acid oxidation rates prevent accumulation of triglyceride in UCP2(-/-) islets, such accumulation being a phenomenon associated with lipotoxicity.  相似文献   

4.
The skeletal muscle mitochondrial uncoupling protein-3 (UCP3) promotes substrate oxidation, but direct evidence for its metabolic role is lacking. Here, we show that UCP3 overexpression in cultured human muscle cells decreased mitochondrial membrane potential (DYm). Despite this, the ATP content was not significantly decreased compared with control cells, whereas ADP content was reduced and thus the ATP/ADP ratio raised. This finding was contrasts with the effect caused by the chemical protonophoric uncoupler, CCCP, which lowered DYm, ATP, and the ATP/ADP ratio. UCP3-overexpression enhanced oxidation of oleate, regardless of the presence of glucose, whereas etomoxir, which blocks fatty acid entry to mitochondria, suppressed the UCP3 effect. Glucose oxidation was stimulated in UCP3-overexpressing cells, but this effect was inhibited by oleate. UCP3 caused weak increase of both 2-Deoxyglucose uptake and glycolytic rate, which differed from the marked stimulation by CCCP. We concluded that UCP3 promoted nutrient oxidation by lowering DYm and enhanced fatty acid-dependent inhibition of glucose oxidation. Unlike the uncoupler CCCP, however, UCP3 raised the ATP/ADP ratio and modestly increased glucose uptake and glycolysis. We propose that this differential effect provides a biological significance to UCP3, which is up-regulated in metabolic stress situations where it could be involved in nutrient partitioning.  相似文献   

5.
Cytosolic free Ca2+ rises in pancreatic beta-cells in response to glucose stimulation and is part of the coupling to insulin secretion. This study evaluates a possible role for cytosolic long chain acyl-CoA esters in modulating Ca2+ handling by clonal beta-cells (HIT). Intact cells incubated with 20 microM free palmitic acid exhibited a 40% decrease in basal cytosolic free Ca2+. In contrast, acyl-CoA esters, up to a chain length of 16, but not the corresponding fatty acids, significantly lowered the Ca2+ set point maintained by cells permeabilized with saponin. The maximum response to the various acyl-CoA esters increased with increasing chain length, with no differences in the half-maximally effective concentration of 0.5 microM. Long chain acyl-CoA esters caused a 40-50% increase in 45Ca2+ influx into a non-mitochondrial pool in the permeabilized HIT cells, consistent with a stimulatory effect on the endoplasmic reticulum Ca(2+)-ATPase activity, but did not affect inositol 1,4,5-trisphosphate-induced Ca(2+)-efflux. Thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase activity, blocked the decrease in the Ca2+ set point caused by acyl-CoA esters. The ability of acyl-CoA esters to lower the Ca2+ set point depended on the ATP/ADP ratio (or free ADP); the Ca2+ set point was lowered by 36 +/- 3.6% at an ATP/ADP ratio of 90 and by 14 +/- 1.9% at an ATP/ADP ratio of 7. Depletion of cellular protein kinase C did not prevent the acyl-CoA-induced lowering of the Ca2+ set point. These findings suggest that the increases in long chain acyl-CoA esters may play a role in restoring cytosolic free Ca2+ through activation of Ca(2+)-ATPases.  相似文献   

6.
The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic beta-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca(2+)-dependent exocytosis. Simultaneously, GLP-1 promotes Ca(2+) influx and mobilizes an intracellular source of Ca(2+). GLP-1 sensitizes intracellular Ca(2+) release channels (ryanodine and IP (3) receptors) to stimulatory effects of Ca(2+), thereby promoting Ca(2+)-induced Ca(2+) release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K(+) channels (K-ATP), membrane depolarization, and influx of Ca(2+) through voltage-dependent Ca(2+) channels (VDCCs). Ca(2+) influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca(2+) release channels are sensitized by GLP-1, Ca(2+) influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no "fuel" is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new "feed-forward" hypothesis of beta-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects.  相似文献   

7.
Proton leak exerts stronger control over ATP/ADP in mitochondria from clonal pancreatic beta-cells (INS-1E) than in those from rat skeletal muscle, due to the higher proton conductance of INS-1E mitochondria [Affourtit and Brand (2006) Biochem. J. 393, 151-159]. In the present study, we demonstrate that high proton leak manifests itself at the cellular level too: the leak rate (measured as myxothiazol-sensitive, oligomycin-resistant respiration) was nearly four times higher in INS-1E cells than in myoblasts. This relatively high leak activity was decreased more than 30% upon knock-down of UCP2 (uncoupling protein-2) by RNAi (RNA interference). The high contribution of UCP2 to leak suggests that proton conductance through UCP2 accounts for approx. 20% of INS-1E respiration. UCP2 knock-down enhanced GSIS (glucose-stimulated insulin secretion), consistent with a role for UCP2 in beta-cell physiology. We propose that the high mitochondrial proton leak in beta-cells is a mechanism which amplifies the effect of physiological UCP2 regulators on cytoplasmic ATP/ADP and hence on insulin secretion.  相似文献   

8.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

9.
Ho PW  Ho JW  Tse HM  So DH  Yiu DC  Liu HF  Chan KH  Kung MH  Ramsden DB  Ho SL 《PloS one》2012,7(2):e32810
Mitochondrial uncoupling protein-4 (UCP4) protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP(+)), but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01), with 20% greater proton leak than vector controls (p<0.01). Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05). Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05), associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05). ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis.  相似文献   

10.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

11.
Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.  相似文献   

12.
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.  相似文献   

13.
In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.  相似文献   

14.
We have previously characterized an insulin receptor substrate 1 (IRS-1)-overexpressing beta-cell line. These beta-cells demonstrated elevated fractional insulin secretion and elevated cytosolic Ca(2+) levels compared with wild-type and vector controls. This effect of IRS-1 may be mediated via an interaction with the sarco-endoplasmic reticulum calcium ATPase (SERCA). Here we demonstrate that IRS-1 and IRS-2 localize to an endoplasmic reticulum (ER)-enriched fraction in beta-cells using subcellular fractionation. We also observe co-localization of both IRS-1 and IRS-2 with ER marker proteins using immunofluorescent confocal microscopy. Furthermore, immuno-electron microscopy studies confirm that IRS-1 and SERCA3b localize to vesicles derived from the ER. In Chinese hamster ovary-T (CHO-T) cells transiently transfected with SERCA3b alone or together with IRS-1, SERCA3b co-immunoprecipitates with IRS-1. This interaction is enhanced with insulin treatment. SERCA3b also co-immunoprecipitates with IRS-1 in wild-type and IRS-1-overexpressing beta-cell lines. Ca(2+) uptake in ER-enriched fractions prepared from wild-type and IRS-1-overexpressing cell lines shows no significant difference, indicating that the previously observed decrease in Ca(2+) uptake by IRS-1-overexpressing cells is not the result of a defect in SERCA. Treatment of wild-type beta-cells with thapsigargin, an inhibitor of SERCA, resulted in an increase in glucose-stimulated fractional insulin secretion similar to that observed in IRS-1-overexpressing cells. The colocalization of IRS proteins and SERCA in the ER of beta-cells increases the likelihood that these proteins can interact with one another. Co-immunoprecipitation of IRS-1 and SERCA in CHO-T cells and beta-cells confirms that these proteins do indeed interact directly. Pharmacological inhibition of SERCA in beta-cells results in enhanced secretion of insulin. Taken together, our data suggest that interaction between IRS proteins and SERCA is an important regulatory step in insulin secretion.  相似文献   

15.
Insulin secretion from glucose-stimulated pancreatic beta-cells is oscillatory, and this is thought to result from oscillations in glucose metabolism. One of the primary metabolic stimulus-secretion coupling factors is the ATP/ADP ratio, which can oscillate as a result of oscillations in glycolysis. Using a novel multiwell culture plate system, we examined oscillations in insulin release and the ATP/ADP ratio in the clonal insulin-secreting cell lines HIT T-15 and INS-1. Insulin secretion from HIT cells grown in multiwell plates oscillated with a period of 4 min, similar to that seen previously in perifusion experiments. Oscillations in the ATP/ADP ratio in cells grown under the same conditions also occurred with a period of 4 min, as did oscillations in [Ca(2+)](i) monitored by fluorescence microscopy. In INS-1 cells oscillations in insulin secretion, the ATP/ADP ratio, and [Ca(2+)](i) were also seen, but with a shorter period of about 1.5 min. These observations of oscillations in the ATP/ADP ratio are consistent with their proposed role in driving the oscillations in [Ca(2+)](i) and insulin secretion. Furthermore, these data show that, at least in the clonal beta-cell lines, cell contact or even circulatory connection is not necessary for synchronous oscillations induced by a rise in glucose.  相似文献   

16.
Pancreatic beta-cell death is a critical event in type 1 diabetes, type 2 diabetes, and clinical islet transplantation. We have previously shown that prolonged block of ryanodine receptor (RyR)-gated release from intracellular Ca(2+) stores activates calpain-10-dependent apoptosis in beta-cells. In the present study, we further characterized intracellular Ca(2+) channel expression and function in human islets and the MIN6 beta-cell line. All three RyR isoforms were identified in human islets and MIN6 cells, and these endoplasmic reticulum channels were observed in close proximity to mitochondria. Blocking RyR channels, but not sarco/endoplasmic reticulum ATPase (SERCA) pumps, reduced the ATP/ADP ratio. Blocking Ca(2+) flux through RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of hypoxia-inducible factor (HIF-1beta). Moreover, inhibition of RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of presenilin-1. Both HIF-1beta and presenilin-1 expression were also induced by low glucose. Overexpression of presenilin-1 increased HIF-1beta, suggesting that HIF is downstream of presenilin. Our results provide the first evidence of a presenilin-HIF signaling network in beta-cells. We demonstrate that this pathway is controlled by Ca(2+) flux through intracellular channels, likely via changes in mitochondrial metabolism and ATP. These findings provide a mechanistic understanding of the signaling pathways activated when intracellular Ca(2+) homeostasis and metabolic activity are suppressed in diabetes and islet transplantation.  相似文献   

17.
Glucose stimulation of pancreatic beta-cells causes oscillatory influx of Ca2+, leading to pulsatile insulin secretion. We have proposed that this is due to oscillations of glycolysis and the ATP/ADP ratio, which modulate the activity of ATP-sensitive K+ channels. We show here that dihydroxyacetone, a secretagogue that feeds into glycolysis below the putative oscillator phosphofructokinase, could cause a single initial peak in cytoplasmic free Ca2+ ([Ca2+]i) but did not by itself cause repeated oscillations in [Ca2+]i in mouse pancreatic beta-cells. However, in the presence of a substimulatory concentration of glucose (4 mm), dihydroxyacetone induced [Ca2+]i oscillations. Furthermore, these oscillations correlated with oscillations in the ATP/ADP ratio, as seen previously with glucose stimulation. Insulin secretion in response to dihydroxyacetone was transient in the absence of glucose but was considerably enhanced and somewhat prolonged in the presence of a substimulatory concentration of glucose, in accordance with the enhanced [Ca2+]i response. These results are consistent with the hypothesized role of phosphofructokinase as the generator of the oscillations. Dihydroxyacetone may affect phosphofructokinase by raising the free concentration of fructose 1,6-bisphosphate to a critical level at which it activates the enzyme autocatalytically, thereby inducing the pulses of phosphofructokinase activity that cause the metabolic oscillations.  相似文献   

18.
Chronic exposure of rat pancreatic islets and INS-1 insulinoma cells to glucosamine (GlcN) produced a reduction of glucose-induced (22.2 mM) insulin release that was associated with a reduction of ATP levels and ATP/ADP ratio compared with control groups. To further evaluate mitochondrial function and ATP metabolism, we then studied uncoupling protein-2 (UCP2), F1-F0-ATP-synthase, and mitochondrial membrane potential, a marker of F1-F0-ATP-synthase activity. UCP2 protein levels were unchanged after chronic exposure to GlcN on both pancreatic islets and INS-1 beta-cells. Due to the high number of cells required to measure mitochondrial F1-F0-ATP-synthase protein levels and mitochondrial membrane potential, we used INS-1 cells, and we found that chronic culture with GlcN increased F1-F0-ATP-synthase protein levels but decreased glucose-stimulated changes of mitochondrial membrane potential. Moreover, F1-F0-ATP-synthase was highly glycosylated, as demonstrated by experiments with N-glycosidase F and glycoprotein staining. Tunicamycin (an inhibitor of protein N-glycosylation), when added with GlcN in the culture medium, was able to partially prevent all these negative effects on insulin secretion, adenine nucleotide content, mitochondrial membrane potential, and protein glycosylation. Thus we suggest that GlcN-induced pancreatic beta-cell toxicity might be mediated by reduced cell energy production. An excessive protein N-glycosylation of mitochondrial F1-F0-ATP-synthase might lead to cell damage and secretory alterations in pancreatic beta-cells.  相似文献   

19.
Ca2+ microdomains and the control of insulin secretion   总被引:2,自引:0,他引:2  
Rutter GA  Tsuboi T  Ravier MA 《Cell calcium》2006,40(5-6):539-551
Nutrient-induced increases in intracellular free Ca(2+) concentrations are the key trigger for insulin release from pancreatic islet beta-cells. These Ca(2+) changes are tightly regulated temporally, occurring as Ca(2+) influx-dependent baseline oscillations. We explore here the concept that locally high [Ca(2+)] concentrations (i.e. Ca(2+) microdomains) may control exocytosis via the recruitment of key effector proteins to sites of exocytosis. Importantly, recent advances in the development of organelle- and membrane-targeted green fluorescent protein (GFP-) or aequorin-based Ca(2+) indicators, as well as in rapid imaging techniques, are providing new insights into the potential role of these Ca(2+) microdomains in beta-cells. We summarise here some of the evidence indicating that Ca(2+) microdomains beneath the plasma membrane and at the surface of large dense core vesicles may be important in the normal regulation of insulin secretion, and may conceivably contribute to "ATP-sensitive K(+)-channel independent" effects of glucose. We also discuss evidence that, in contrast to certain non-excitable cells, direct transfer of Ca(2+) from the ER to mitochondria via localised physical contacts between these organelles is relatively less important for efficient mitochondrial Ca(2+) uptake in beta-cells. Finally, we discuss evidence from single cell imaging that increases in cytosolic Ca(2+) are not required for the upstroke of oscillations in mitochondrial redox state, but may underlie the reoxidation process.  相似文献   

20.
Glucose-stimulated insulin secretion (GSIS) is central to normal control of metabolic fuel homeostasis, and its impairment is a key element of beta-cell failure in type 2 diabetes. Glucose exerts its effects on insulin secretion via its metabolism in beta-cells to generate stimulus/secretion coupling factors, including a rise in the ATP/ADP ratio, which serves to suppress ATP-sensitive K(+) (K(ATP)) channels and activate voltage-gated Ca(2+) channels, leading to stimulation of insulin granule exocytosis. Whereas this K(ATP) channel-dependent mechanism of GSIS has been broadly accepted for more than 30 years, it has become increasingly apparent that it does not fully describe the effects of glucose on insulin secretion. More recent studies have demonstrated an important role for cyclic pathways of pyruvate metabolism in control of insulin secretion. Three cycles occur in islet beta-cells: the pyruvate/malate, pyruvate/citrate, and pyruvate/isocitrate cycles. This review discusses recent work on the role of each of these pathways in control of insulin secretion and builds a case for the particular relevance of byproducts of the pyruvate/isocitrate cycle, NADPH and alpha-ketoglutarate, in control of GSIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号