首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
To study the mechanism of spermatogenesis during the premeiotic phase, a hybridoma producing monoclonal antibody (mAb) specific for early stages of spermatogenic cells was obtained. In immunohistochemical staining of adult testis, this mAb, designated as EE2, was able to react with type A to B spermatogonia and early meiotic cells, but not with Sertoli cells, Leydig cells, and other somatic tissues. Precursor cells of type A spermatogonia (gonocytes) were also positive for EE2 in perinatal mouse testis. The antigenic molecule recognized by mAb EE2 was a novel glycoprotein with molecular weight of 114 kDa, which had affinity with Con A and WGA lectins, and was susceptible to N-glycanase, suggesting the presence of asparagine-linked sugar chains. Furthermore, EE2 antigen was found to localize on the germ cell surface. The specific expression of this antigenic molecule suggests that it may play an important role in early spermatogenesis, of which only a little information is available at present. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Summary Numerous mitoses were noted in testicular tissue from adult men with early germ cell tumors. More than 15 Leydig cells undergoing mitosis were found in the interstitial compartment. The presence of specific crystalline intracytoplasmatic inclusions demonstrated for the first time that differentiated Leydig cells are capable of proliferation. Occasionally cells are difficult to discriminate during mitosis. To establish reference criteria, the light- and electron-microscopic features of the following mitotic cells were examined: Leydig cells, fibroblasts, perivascular cells, peritubular cells, and lymphocytes. Supplementary mitoses in germ cell tumors and in a case of Leydig cell tumor were investigated. In the literature, only single reports of mitoses in Leydig cells are available. The frequent incidence of Leydig cell mitosis in early germ cell tumors may be due to the presence of growth-promoting factors in the testicular tissue.  相似文献   

5.
Progression of germ cells through meiosis is regulated by phosphorylation events. We previously showed the key role of cyclin dependent kinases in meiotic divisions of rat spermatocytes co-cultured with Sertoli cells (SC). In the present study, we used the same culture system to address the role of mitogen-activated protein kinases (MAPKs) in meiotic progression. Phosphorylated ERK1/2 were detected in vivo and in freshly isolated SC and in pachytene spermatocytes (PS) as early as 3 h after seeding on SC. The yield of the two meiotic divisions and the percentage of highly MPM-2-labeled pachytene and secondary spermatocytes (SII) were decreased in co-cultures treated with U0126, an inhibitor of the ERK-activating kinases, MEK1/2. Pre-incubation of PS with U0126 resulted in a reduced number of in vitro formed round spermatids without modifying the number of SII or the MPM-2 labeling of PS or SII. Conversely, pre-treatment of SC with U0126 led to a decrease in the percentage of highly MPM-2-labeled PS associated with a decreased number of SII and round spermatids. These results show that meiotic progression of spermatocytes is dependent on SC-activated MAPKs. In addition, high MPM-2 labeling was not acquired by PS cultured alone in Sertoli cell conditioned media, indicating a specific need for cell-cell contact between germ cells and SC.  相似文献   

6.
7.
Cloning and expression profiling of testis-expressed microRNAs   总被引:2,自引:0,他引:2  
Using a new small RNA cloning method, we identified 141 miRNAs from the mouse testis, of which 29 were novel. The 141 miRNAs were mapped onto all chromosomes except the Y chromosome and 2/3 of these miRNA genes exist as clusters. ∼ 70% of these miRNA genes were located in intronic or intergenic regions, whereas the remaining miRNAs were derived from exonic sequences. We further validated these cloned miRNAs by examining their expression in multiple mouse organs including developing testes and also in purified spermatogenic cells using semi-quantitative PCR analyses. Our expression profiling assays revealed that 60% of the testis-expressed miRNAs were ubiquitously expressed and the remaining are either preferentially (35%) or exclusively (5%) expressed in the testis. We also observed a lack of strand selection during testicular miRNA biogenesis, characterized by paired expression of both the 5′ strands and 3′ strands derived from the same precursor miRNAs. The present work identified numerous miRNAs preferentially or exclusively expressed in the testis, which would be interesting targets for further functional studies.  相似文献   

8.
Summary Morphological changes in rat germ cell mitochondria are described. In diplotene and secondary spermatocytes and in the spermatids of the Golgi, cap and acrosomal phases, the mitochondria take on a rounded appearance with the inner space containing the matrix flattened against the outer membrane and the intracristal spaces considerably swollen (condensed mitochondria).Functional studies on condensed mitochondria isolated from the germ cells of normal rats have been performed. The following parameters have been evaluated: ADP/O ratio, respiratory control ratio (RCR) and ADP affinity. The ADP/O values found in the presence of various substrates are in agreement with the theoretical figures. The RCR is remarkably high. Moreover, the ADP affinity of these mitochondria is very high, as demonstrated by the low values of the apparent Km. These biochemical findings, which demonstrate a high oxidative capacity coupled with a marked phosphorylation, suggest that the condensed appearance of germ cell mitochondria is the expression of an active functional state.The work was partially supported by a grant from The Consiglio Nazionale delie Ricerche (C.N.R.), Rome, Italy  相似文献   

9.
10.
11.
Identification of a novel male germ cell-specific gene TESF-1 in mice   总被引:7,自引:0,他引:7  
Mammalian spermatogenesis is precisely regulated by many germ cell-specific factors. In search for such a germ cell-specific factor, we have identified a novel mouse gene testis-specific factor 1 (TESF-1). Messenger RNA of TESF-1 was found only in the testis and its expression appeared to be regulated in a developmental manner. Further analysis demonstrated that the expression of TESF-1 was specifically in male germ cells, supported by the observation that we were not able to detect the TESF-1 mRNA from at/at homozygous mutant testes, which lack germ cells. The deduced amino acid sequence of TESF-1 contains a leucine-zipper motif, a potential nuclear localization signal, and two cAMP- and cGMP-dependent protein kinase phosphorylation sites. The green fluorescent protein (GFP)-tagged TESF-1 fusion protein was expressed in COS-7 cells and localized primarily in the nucleus. Taken together, these results indicate that TESF-1 is a novel male germ cell-specific gene, and its protein product may function as a nuclear factor involved in the regulation of spermatogenesis.  相似文献   

12.
13.
Spermatogenesis requires intact, fully competent Sertoli cells. Here, we investigate the functions of Dicer, an RNaseIII endonuclease required for microRNA and small interfering RNA biogenesis, in mouse Sertoli cell function. We show that selective ablation of Dicer in Sertoli cells leads to infertility due to complete absence of spermatozoa and progressive testicular degeneration. The first morphological alterations appear already at postnatal day 5 and correlate with a severe impairment of the prepubertal spermatogenic wave, due to defective Sertoli cell maturation and incapacity to properly support meiosis and spermiogenesis. Importantly, we find several key genes known to be essential for Sertoli cell function to be significantly down-regulated in neonatal testes lacking Dicer in Sertoli cells. Overall, our results reveal novel essential roles played by the Dicer-dependent pathway in mammalian reproductive function, and thus pave the way for new insights into human infertility.  相似文献   

14.
Chung EY 《Tissue & cell》2008,40(3):195-205
The ultrastructures of germ cells, Leydig cells, and Sertoli cells during spermatogenesis in male Boleophthalmus pectinirostris were investigated by electron microscopic observations. During the period of maturation divisions, well-developed Leydig cells have three major morphological characteristics: a vesicular nucleus, mitochondria with tubular cristae, and a number of smooth endoplasmic reticulum. Based on cytoplasmic features, it appears that Leydig cells are responsible for the synthesis of male sex steroids. Although no clear evidence of steroidogenesis was found in the Sertoli cells, they were found to perform a phagocytic function in the seminiferous lobules. Most Sertoli cells contain granules thought to represent deposited glycogen or lipid but there is no indication of a transfer of nutrients to the spermatids. During the period of germ cell degeneration, several characteristics of phagocytosis appear in the cytoplasm of the Sertoli cells. In particular, it is assumed that the Sertoli cells are involved in the degeneration and resorption of undischarged spermatids after spermiation. No acrosome of the sperm is formed. The structure of the spermatozoon in B. pectinirostris is very similar and closely resembles to those of suborder Gobioidei (perciform type teleosts). The flagellum or sperm tail shows the typical 9+2 array of microtubules.  相似文献   

15.
A general mammalian expression vector designated pSV2-EP was reconstructed by inserting an oligonucleotide fragment into pSV2-dhfr. This vector allowed insertion of cDNAs with EcoRI cohesive ends. The pSV2-EP contains a simian virus 40 (SV40) early promoter, origin for DNA replication, SV40 poly-A site, splicing site, an initiator ATG downstream from the promoter and an EcoRI site for the insertion of cDNA fragment screened from lambda gt11 expression libraries. A recombinant plasmid (pS-VRS-1) was constructed by inserting RSD-1, a cDNA encoding a rabbit sperm tail protein, into the EcoRI site of the pSV2-EP vector. Chinese hamster ovarian (CHO) dhfr-negative cells were cotransformed with pSV2-dhfr and pSVRS-1 by the calcium phosphate method. In selective culture medium without thymidine and hypoxanthine, several cell lines were obtained containing mRNA and DNA that hybridized with RSD-1. One of these transformed cell lines stained intensely with anti-rSMP-B antibodies, demonstrating that the RSD-1 was expressed in the transformed CHO cells.  相似文献   

16.
17.
Normal spermatogenesis is heavily dependent on the balance of germ cell proliferation, differentiation and apoptosis. Growth differentiation factor 9 (GDF9) and cyclin-dependent kinase inhibitor 1 B (CDKN1B) are strongly associated with cell cycle transition from G0/G1 to S and G2/M phase and hence regulating the growth and development of testicular germ cells and somatic cells. The current study was aimed at seeking out scientific evidence to determine if GDF9 and CDKN1B gene expression functions in the development of Tibetan sheep testes. To this end, developmental testes were derived from three-month-old (pre-puberty), one-year-old (sexual maturity), and three-year-old (adult) Tibetan sheep and then the expression and localization patterns of GDF9 and CDKN1B in these testes were evaluated using quantitative real-time PCR (qRT-PCR), Western blot and immunofluorescence. qRT-PCR and Western blot results showed that GDF9 and CDKN1B were detected in the testes throughout the different developmental stages. The abundance of GDF9 mRNA and protein in the testes of one- and three-year-old Tibetan sheep were higher than that in the testes of three-month-old Tibetan sheep; the mRNA and protein abundance of the CDKN1B gene in three-month-old Tibetan sheep testes were higher than that in the testes of the one-and three-year-old sheep. Moreover, immunofluorescence results suggested that the GDF9 protein was expressed in spermatogonia and Leydig cells, and that the CDKN1B protein was localized mainly in Leydig cells with some in the seminiferous epithelium throughout developmental stages. This indicated a novel role of the GDF9 and CDKN1B genes in Leydig cell development over and above their known roles in germ cell development. These findings have significant implications for our understanding of the molecular mechanisms of GDF9 and CDKN1B genes in Tibetan sheep spermatogenesis.  相似文献   

18.
The biochemical efficacy of aromatase inhibitors and inactivators in vivo may be determined by two types of methods; by measuring plasma or tissue estrogen levels, or assessment of the conversion of the androgen substrate (in practice, androstenedione) into estrogens (estrone) by the use of tracer methods. While methods to determine plasma and tissue estrogens are limited through lack of sensitivity required to measure the very low concentrations recorded in postmenopausal women on treatment with these compounds, measurement of in vivo aromatization is an extensive procedure, applicable to a limited number of patients only. While we may correlate the mean level of aromatase inhibition achieved with different compounds to clinical efficacy, data correlating individual estrogen suppression to clinical outcome among patients treated with a specific compound is limited. The now well-characterized phenomenon of lack of cross-resistance between non-steroidal aromatase inhibitors and steroidal aromatase inactivators are likely due to biochemical effects not related to differences in total body aromatase inhibition.  相似文献   

19.
The localization of albumin and transferrin was examined immunohistochemically in germ cells and Sertoli cells during rat gonadal morphogenesis and postnatal development of the testis. These proteins appeared as early as the 13th day of gestation in migrating primordial germ cells before Sertoli cell differentiation. In the fetal testis, strong immunoreactivity was only detected in the gonocytes. In the prepubertal testis, spermatogonia, primary spermatocytes, and some Sertoli cells accumulate albumin and transferrin. At puberty, different patterns of immunostaining of the germ cells were observed at the various stages of the cycle of the seminiferous epithelium. Diplotene spermatocytes at stage XIII, spermatocytes in division at stage XIV, and round spermatids at stages IV–VIII showed maximal staining. Labeling was evident in the cytoplasm of adult Sertoli cells. Albumin and transferrin staining patterns paralleled each other during ontogenesis.  相似文献   

20.
Xie F  Conti M 《Developmental biology》2004,265(1):196-206
To gain insight into the mechanisms of cAMP signaling in germ cells, the expression and subcellular localization of the full-length form of the soluble adenylyl cyclase (sAC) was investigated during rat spermatogenesis and in spermatozoa. A full-length sAC-specific antibody was generated by using a glutathione S-transferase (GST)-sAC carboxyl-terminal region (1399aa-1608aa) fusion protein as the antigen. The selectivity of the purified antibody was confirmed by immunoblotting with lysates from HEK293 cells overexpressing full-length sAC or truncated sAC. Western blot analysis demonstrated that full-length sAC protein appeared on day 25 during testis development. The expression levels increased progressively on days 30 and 35 and remained elevated in adult testis. Full-length sAC protein is retained in spermatozoa from the cauda epididymis. Consistent with the timing of the appearance of the Western blot signal, immunohistochemistry with testis sections at different stages of development detected sAC in late pachytene spermatocytes as well as round and elongating spermatids. Further experiments on the subcellular localization of native or recombinant enzymes revealed that full-length sAC is not only recovered in soluble fractions but also in particulate fractions of testis extracts. Immunofluorescence detection showed localization of the protein in the cytoplasm as well as in organelles of pachytene spermatocytes and spermatids. These findings indicate that cAMP production in spermatids and spermatozoa may occur at sites other than the plasma membrane and suggest that full-length sAC may play a role during spermatid differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号