首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reproductive performance of Coopworth ewes after administration of zearalenone was determined in two trials. In Trial I, zearalenone was administered to groups of 33 ewes at rates of 0, 1.5, 3.0, 6.0, 12.0 and 24.0 mg/ewe/day for 10 days, starting on Day 7 of the oestrous cycle before mating. There was a linear decline (P less than 0.001) in ovulation rate with dose of zearalenone; also cycle length decreased and duration of oestrous increased with increasing dose levels. Reductions in the incidence of ovulation and in fertilization were seen only at doses of 12 and 24 mg. In Trial 2, groups of 50 ewes were given the same range of doses of zearalenone for 10 days, starting 5 days after mating to entire rams. There was no effect of zearalenone treatment after mating on pregnancy rate or embryonic loss. These results indicate that the effects of zearalenone, administered orally, on ewe reproduction, at the dose levels examined, were restricted to ewes exposed before mating. Intakes of zearalenone of 3 mg/ewe/day or more during this period would be reflected as depressed ovulation rates and lower lambing percentages.  相似文献   

2.
Two experiments were conducted to examine effects of exogenous ovine growth hormone (oGH) on growth and reproductive traits of ewe lambs. In the first trial, 30 Debouillet ewe lambs (4 months old) received either 0 or 2.5 mg, s.c. of oGH (Day 0 = first day of 98-day treatment). Ovarian cyclicity was determined by monitoring serum progesterone. Efficiency of gain (first 50 days of treatment) was more (P < 0.10) desirable in oGH-treated animals, but did not differ (P > 0.20) between groups during the last 48 days of treatment. Serum GH in alternate-day samples was elevated five-fold (P < 0.01). First estrus occurred 10 days earlier (P = 0.14) in oGH-treated ewe lambs. In a second trial, 45 ewe lambs were evenly divided into three groups receiving 0 mg of oGH (CON; 50 injections), 2.5 mg of oGH (GH98, 50 injections) or 25 injections containing 2.5 mg of oGH followed by 25 injections of 0 mg of oGH (GH48) on alternate days for 98 days before a breeding season. Ewe lambs receiving GH48 had higher (P < 0.05) gains the first 24 days than those receiving CON or GH98. Ewes receiving GH48 demonstrated first estrus (P = 0.06) 22 days before control ewes and 28 days before GH98 ewes. Other reproductive traits did not differ (P > 0.25). Serum GH was greatly elevated by injections of exogenous oGH, but neither serum insulin nor prolactin was affected. Short-term elevation of serum GH resulting from exogenous oGH injections marginally enhances reproductive and growth responses, but does not induce major changes in these traits in ewe lambs after 4 months of treatment.  相似文献   

3.
The application of pGH (porcine Growth Hormone) to superovulated ewes was studied with the aim of improving the embryo yield. Thirty-seven ewes were superovulated with pFSH for 3 d and 18 of them were cotreated the third day with 0.50 mg of pGH. Embryos were surgically recovered on Day 7 after sponge withdrawal. Then, 102 morphologically healthy embryos were immediately transferred in pairs to 51 synchronized recipient ewes. The GH treatment did not significantly affect the percentage of ewes in estrus, the time of estrus onset or the ovulation rate. However, it improved synchronization by grouping estrus in a narrower range (12 h) in comparison to the control group (24 h); (16 to 28 h after sponge withdrawal vs 12 to 36 h; P < 0.05). The total amount of LH released during the preovulatory surge was lower in the GH than in the control group (P < 0.05). No differences were found between groups for other LH-related parameters such as basal levels, peak values or peak time from sponge removal. The proportions of unfertilized oocytes and degenerate embryos recovered were lower in the GH cotreated group (P < 0.05 and P < 0.01, respectively). This resulted in higher rates of transferable embryos and lambs born per donor ewe in the GH than in the untreated group (3.9 vs 1.7 and 2.28 vs 0.84, respectively; both, P < 0.05). These beneficial effects of GH would likely be due either to a direct action on oocyte maturation or to an indirect action on the oviductal environment.  相似文献   

4.
Two experiments were conducted during mid-gestation to examine effects in ewes of propylthiouracil (PTU) treatment alone or with melatonin on serum thyroid hormones, postpartum reproduction, and lamb performance. In the first experiment, beginning on day 0 (first day of treatment when all animals were 72.2+/-0.9 days of gestation), ewes received daily treatments (gavage) consisting of either 0mg (n=6) or 40 mg (n=6) PTU/kg body weight/day for 15 days. After 15 days, the 40 mg dosage was decreased to 20mg/kg body weight for an additional 20 days (35 days of PTU). Serum thyroxine (T4) did not differ (P>0.10) between groups through day 4; but on day 5, control females had a serum value of 67 ng/ml compared with 46 (+/-5)ng/ml for PTU-treated ewes (P=0.02). On the last day that 40 mg of PTU was administered, serum T4 averaged 67 and 7 (+/-5)ng/ml (P<0.001) in the two respective groups. Serum T4 remained low and was 80 and 1 ng/ml (P<0.001) in control and treated ewes on day 34. Serum T4 rose gradually after PTU but remained different from that observed in control ewes through day 48. Lambs from control and treated ewes had similar (P=0.46) T4 values at birth but lambs from PTU-treated ewes had lower (P=0.03) birth weights than did those from control ewes. Serum progesterone (P4) after parturition indicated a lack of cyclicity in all ewes. In the second experiment, beginning on day 0 (76.8+/-4.7 days of gestation), ewes received PTU as in Experiment 1. In addition, after 15 days of PTU, melatonin was given (i.m. injections at 5mg/day) for 30 days. Propylthiouracil decreased (P0.60) for lambs born to control and treated ewes. Female offspring of PTU+melatonin-treated dams reached puberty, became anestrus, and returned to cyclicity at similar (P>0.10) times to contemporary ewe lambs. Results indicate that 40/20mg PTU alone or with melatonin does not induce cyclicity after lambing in spring lambing ewes and has little effect on offspring performance.  相似文献   

5.
The effect of an exogenous FSH treatment in the periovulatory, post-LH surge period on superovulatory response in the subsequent cycle of ewes and heifers was investigated. Thirty-five ewes were synchronized with progestagen pessaries and pregnant mares serum gonadotropin. The day following the onset of estrus (Day 1) 17 ewes received one intramuscular injection of 5 mg follicle stimulating hormone of porcine origin (FSH-p). All 35 ewes received another progestagen pessary on Day 1 and were superovulated with horse anterior pituitary extract (HAP). The ewes were bred and embryos collected 6 days following the onset of estrus. Early cycle FSH-p administration did not increase the subsequent ovulation rate (6.5 vs. 8.4 for controls, n.s.). Recovery rate for the FSH-p treated animals was higher (78.5% vs. 49.3%; P<0.05) as was fertilization rate (100% vs. 62.4%; P<0.05). The final result was a mean of 4.4 transferable embryos per ewe treated among the FSH-p boosted ewes and 2.6 transferable embryos per ewe treated among the control ewes.Twenty-nine heifers were brought into estrus with one 500-μg injection of prostaglandin F (PG). Twelve of the 29 heifers were given one intramuscular injection of 10 mg FSH-p on either Day 2 or 3 (Day 1 is the day following the onset of estrus). All heifers were superovulated starting on Day 11–16, over a 4-day period using a decreasing dosage of FSH-p. Prostaglandin was administered at the time of the fifth superovulatory FSH-p injection and the heifers were bred by artificial insemination. Ova were recovered between 2 and 4.5 days following the onset of estrus. There was no effect on ovulation rate due to the interval from FSH-p priming to the day of superovulatory FSH-p initiation. The proportion of heifers that ovulated when given a FSH-p injection early in the cycle was higher than in the control group (94% vs. 68%; P<0.05). The primed heifers had a higher number of ovulations than did the control heifers (16.3 vs. 6.2; P<0.01). The effect of higher ovulation rate carried through all parameters measured, so that the FSH-p primed heifers also had a higher number of fertilized ova than the controls (10.7 vs. 3.9; P<0.05), indicating that there was no significant deterioration in ovum quality due to the FSH-p priming. The results show that FSH-p improved superovulatory efficiency in both sheep and cattle.  相似文献   

6.
Spodoptera litura (F.) larvae were fed with artificial food containing four different concentrations of copper (25, 50, 100, and 200 mg/kg). Copper affected growth, development, and population dynamics of late instar larvae. Our results indicate that the fourth and fifth instar survival rates were significantly reduced at 50-200 mg/kg copper (Cu2+). Moreover, all the Cu2+ treatments significantly reduced pupation and moth emergence rates in a dose-dependent manner. Larvae fed 25 or 50 mg/kg Cu2+ showed significant reductions in development period compared with non-Cu controls, and the pupation duration of animals fed 200 mg/kg was significantly longer than in non-Cu controls. All Cu2+ concentrations significantly reduced individual pupal weights compared with controls. In addition, Cu2+ at some concentrations significantly affected fertility parameters, such as doubling population time (DT), the net reproduction rate (R(o)), the mean generation time (T), the intrinsic rate of increase (r(m)), and the finite increase rate (A). Our study demonstrates that low concentrations of Cu2+ in the diet (25 and 50 mg/kg) shorten the generation time by 4-5 d, whereas higher Cu2+ concentrations (100 and 200 mg/kg) increase DT for 1-2 d.  相似文献   

7.
Three experiments were conducted on Texel ewes to study the influence of prostaglandin F(2alpha) (PGF(2alpha)), prolactin (PRL), estradiol (E(2)), and gonadotrophin releasing hormone (GnRH) on postpartum reproductive activity. In Experiment 1, oral administration of indomethacin (25 to 50 mg/day/ewe) from Day 3 post partum to the first detected estrus inhibited plasma 13, 14-dihydro-15-keto, PGF(2alpha) (PGFM) concentrations (P < 0.0001). This treatment resulted in an earlier rise in the frequency and amplitude of luteinizing hormone (LH) pulses and a resumption of estrous behavior (P < 0.05), while ovarian activity estimated by progesterone (P(4)) concentrations resumed to the same extent in treated ewes and controls. Bromocriptine treatment (2.5 mg/day/ewe) reduced plasma PRL levels (P < 0.0001) but had no effect on ovarian activity as evidenced by P(4) and resumption of estrus or on either the frequency or amplitude of the LH pulse. In Experiment 2, a single injection of GnRH agonist (42 mcg of buserelin/ewe) on Day 16 post partum resulted in an abrupt elevation of plasma LH concentrations; mean LH values were 18 to 27 times higher when compared with those of the control ewes. Two days after this treatment, ovulations occurred in 5 of the treated ewes and in 2 of the control ewes. This induced ovarian activity was not associated with estrous behavior; however, after an adequate subsequent luteal phase all the treated ewes displayed estrus, the resumption of estrus thus being earlier in treated than in control ewes (P < 0.01). In Experiment 3, E(2) supplementation from Day 16 to Day 28 post partum increased the number of LH pulses per 6 hours in suckling ewes (P < 0.05) and induced earlier resumption of estrus in dry ewes but not in suckling ewes (P < 0.01). Luteal function was detected about 5 and 8 days after the insertion of E(2) implants in 4 dry ewes and in 2 suckling ewes, respectively.  相似文献   

8.
Twenty-four Rambouillet ewe lambs (average weight=43.7+/-1.2 kg, approximately 6 months of age) were used to examine the effect of thyroid suppression before the onset of puberty on serum thyroid hormones, body weights (BW), and reproductive performance. Beginning in early September, ewe lambs were randomly assigned to three treatments (n=8 lambs/treatment). All animals remained in a single pen (4 x 12 m) with access to salt, water, shade and alfalfa hay (2.5 kg per animal per day) throughout the experiment. Beginning on Day 0 (first day of treatment), all ewe lambs received daily treatments (gavage) for 15 days consisting of 0, 20, or 40 mg 6-N-propyl-2-thiouracil(PTU)/kg BW per day. Beginning on Day 15, the 20 and 40 mg treatments were lowered to 10 and 20 mg PTU/kg BW, respectively. All animals were treated for 28 days. Ovarian cyclicity was determined by twice weekly progesterone (P(4)) analysis. Thyroxine (T(4)) concentrations were similar on Day 0 (61.6, 54.8 and 56.9+/-2.5 ng/ml, P=0.17) in ewe lambs receiving 0, 20 and 40 mg PTU/kg BW, respectively. By Day 7, both PTU-treated groups had T(4) values less than 20 ng/ml (9.0 and 15.4+/-2.5 ng/ml) compared with 78.5 ng/ml in controls (P<0.01). By 7 days after termination of PTU treatment, serum T(4) had risen to 29.1 and 26.9 (+/-2.9)ng/ml in the 20/10 and 40/20 PTU groups, respectively. On Day 66, control ewes had 55.0 ng T(4)/ml compared with 43.1 and 39.0 (+/-2.6 ng/ml) for ewes in the 20/10 and 40/20 groups, respectively (linear, P<0.01). Serum triiodothyronine (T(3)) followed a similar pattern to that observed for T(4). Ewe lamb BW were similar (P>0.50) among groups throughout the treatment period. However, following the treatment, PTU-treated ewes tended (P<0.10) to weigh less than controls. Average Julian day of puberty was also similar (P>0.50) among treatments (286, 288 and 288+/-5 days; control, 20/10 and 40/20, respectively). Control ewes had a pregnancy rate of 75%, while both PTU-treated groups had pregnancy rates of 88% (P>0.20). The administration of PTU resulted in a rapid decline in serum T(4) and T(3) but neither time of puberty nor pregnancy rates were affected by lowered thyroid hormones.  相似文献   

9.
Ram effect, defined as shortening of seasonal anestrus in ewes by exposure to the ram, is now well recognized but the underlying mechanisms are still unclear. Little information also exists whether the ram is able to influence the estrus cycle and ovulation. Three experiments were conducted to investigate endocrine response, time of ovulation and pregnancy rate of ewes in proestrus, exposed to the ram (treated) or an adult ewe (control). In the first experiment, ewes (n = 20) were treated with fluorgestone acetate pessaries for 12 days and were given eCG and cloprostenol one day before withdrawal of pessaries. On the day after removal of the pessaries ewes in the treated group (n = 10) were exposed to the ram and those in the control group (n = 10) were exposed to an adult ewe. Blood samples were taken for LH assay every 20 min from 2 h before to 24 h after ram exposure. In the second experiment, ewes (n = 120) were induced into proestrus and on the day after removal of the pessaries were exposed to either a ram (n = 60) or a ewe (n = 60) as described above and were laparoscoped 50, 60 or 70 h after pessary withdrawal (n = 20 at each time interval). In the third experiment ewes (n = 90) were induced and exposed to the ram (n = 45) or an adult ewe (n = 45) and inseminated via a laparoscope whit frozen-thawed semen at 50 or 60 h after pessary removal, respectively. Exposure to the ram was followed in 2 h by a marked rise in LH, equivalent to a preovulatory surge in duration and amplitude. It was also followed by concentrated ovulation within 25 to 30 h and by an increased pregnancy rate in exposed ewes (73.3 vs. 53.3%).  相似文献   

10.
Sixty twin-bearing ewes were allocated to one of four dietary treatments investigating the effects of supplementary iodine or cobalt during late pregnancy on lamb serum immunoglobulin G (IgG), triiodothyronine (T3), thyroxine (T4) and vitamin E concentrations, and lamb IgG absorption efficiency. Ewes were offered grass silage ad libitum supplemented with 800 g per ewe per day of a 190 g/kg crude protein (CP) concentrate from day 126 of gestation until parturition plus one of the following supplements (n = 15 per treatment); no supplement (C); 26.6 mg iodine per day for final 3 weeks pre partum (I-3); 26.6 mg iodine/day for final week pre partum (I-1); 20 mg cobalt/day for final 3 weeks pre partum (Co-3). Lambs were blood sampled at 24 and 72 h post partum for serum IgG and vitamin E concentrations. Ten lambs from C and I-3 were blood sampled at 1 h post partum for serum IgG, vitamin E, T3 and T4 concentrations. There were no differences in serum IgG, vitamin E or T4 values (P > 0.05) at 1 h post partum between lambs born to the C and I-3 ewes. T3 levels were lower in I-3 compared with C progeny (P < 0.05). Supplemental iodine reduced colostral IgG absorption efficiency (P < 0.001) and lamb serum IgG concentrations at 24 and 72 h post partum (P < 0.001). Serum vitamin E concentration in I-3 and I-1 lambs was lower than in Co-3 lambs at 24 h post partum, while at 72 h post partum I-3, I-1 and Co-3 lambs had significantly lower concentrations than C lambs (P < 0.001). Supplementing the ewe's diet with 26.6 mg/day of iodine for the final week of pregnancy reduced lamb serum IgG concentration at 24 and 72 h post partum. The lower total and free T3 values in the progeny of I-3-treated ewes suggest interference in the synthesis and metabolism of thyroid hormones when ewes receive excessive dietary iodine for 3 weeks immediately pre partum. Based on these findings, the indications are that the toxicity level for iodine in the diet of the pregnant ewe should be lowered to 20 mg per ewe per day, equivalent to 40% of its current level. The finding that high-level cobalt supplementation during the final 3 weeks of pregnancy will have a negative effect on serum vitamin E concentration at 72 h post partum is a new and significant finding and previously has not been reported in the literature.  相似文献   

11.
This study was conducted at Belen de Escobar, Argentina, in March and April 1987. Experimental work on synchronization of estrus, deep-freeze conservation of ram semen and small fertility trials involving cervical and intrauterine (i.u.) insemination methods was undertaken. A total of 80 Corriedale ewes were used in seven insemination trials. Insemination trials were grouped into two experimental groups for comparison of 1) frozen semen diluted with an experimental extender and a control diluent inseminated cervically or i.u. in synchronized/superovulated ewes and 2) cervical insemination of fresh diluted or frozen semen in ewes inseminated at natural estrus or in ewes that were synchronized/superovulated. An overall ovulation rate of 8.7 +/- 0.5 was obtained by using a superovulatory regimen consisting of 3 mg Norgestomet implants and a total dose of 18 mg follicle stimulating hormone-pituitary (FSH-P). Numbers of ova recovered per ewe following superovulation ranged from 4.3 to 5.4. In experimental Group I, fertilization rates improved when laparoscopic intrauterine AI was used compared with cervical insemination (P<0.05). Fertility rates of i.u. and cervical insemination of frozen semen diluted with the experimental extender showed satisfactory fertilizing capacity. In experimental Group II, a lower number of fertilized ova were recovered from ewes inseminated with frozen semen (P<0.02), irrespective of their estrus manipulation.  相似文献   

12.
The effects of melengestrol acetate (MGA) and P.G. 600 on ewe fertility outside the natural breeding season were evaluated. Rambouillet ewes were assigned to one of four groups: (1) control (C; n=92); (2) PG600 (n=86); (3) MGA (n=99); and (4) MGA+PG600 (n=92). A pellet with or without MGA (0.3mg/ewe/d) was fed at 0.15kg/ewe/d for 7d. On the last day of pellet feeding, ewes were given either saline or 5mL of P.G. 600 i.m. (400IU equine chorionic gonadotropin (eCG) and 200IU human chorionic gonadotropin (hCG)). Ultrasonography was performed between Days 20 and 25 of gestation for ewes that were mated during the first 6 d of the breeding period from the MGA (n=15) and MGA+PG600 (n=8) groups, and the number of luteal structures and embryos were counted. During the first 6d of the breeding period, MGA increased (P<0.05) the percentage of ewes that mated and conceived when compared to C and PG600 (24.2% vs. 3.3% and 10.5%, respectively). Relative to MGA, the mean (+/-S.E.M.) number of luteal structures per ewe was enhanced (P<0.03) in MGA+PG600 (1.53+/-0.13 vs. 2.38+/-0.42, respectively), however as pregnancy progressed, the number of embryos (1.5+/-0.13 vs. 1.8+/-0.16, respectively) and lambs born (1.3+/-0.15 vs. 1.5+/-0.27, respectively) did not differ. Treatment with MGA reduced (P<0.01) the interval from ram introduction to lambing relative to groups that did not receive MGA (168+/-0.8d vs. 171+/-0.6d, respectively). In conclusion, treatment with MGA increased the percentage of ewes conceiving early in the breeding period. Although P.G. 600 increased the number of luteal structures present per ewe, it did not significantly enhance ewe prolificacy.  相似文献   

13.
Three experiments were conducted to study changes in pulsatile secretion of LH and FSH during the breeding season or anoestrus in ovariectomized Ile-de-France ewes fed different amounts of the phyto-oestrogen coumestrol. In Exp. 1, conducted during the breeding season, ewes (3-4 per group) were fed lucerne supplying 4, 18 or 30 mg coumestrol per ewe per day for 15 days. Experiments 2 and 3 were conducted during seasonal anoestrus. In Exp. 2, ewes (4 per group) were fed lucerne supplying coumestrol concentrations ranging from 4 to 38 mg/ewe/day for 15 days. In Exp. 3, ewes (10 per group) were fed lucerne supplying 14 or 125 mg coumestrol/ewe/day for 15 days. During the breeding season, an increased concentration of coumestrol in the diet significantly decreased the amplitude of LH pulses. There were no effects on LH pulse frequency or on FSH concentrations. During seasonal anoestrus, there were no significant effects on LH pulse frequency, or amplitude and no significant effect on FSH concentration. These results show that high concentrations of coumestrol in lucerne diets would not explain seasonal variation in LH pulse frequency in ovariectomized ewes. However, lucerne diets with increased coumestrol concentrations can influence LH release during the breeding season.  相似文献   

14.
Opioid modulation of LH secretion in the ewe   总被引:2,自引:0,他引:2  
Administration of opioid agonists and antagonists and measurement of resulting hormone changes were used to study the possible effects of opioids on reproductive function in the ewe. Intravenous administration of the long-acting methionine-enkephalin analogue FK33-824 (250 micrograms/h for 12 h) to 3 ewes during the follicular phase of the oestrous cycle depressed episodic LH secretion. This effect was reversed by administration of the opiate antagonist naloxone (25 mg/h) in combination with the FK33-824 treatment; in fact LH secretion was enhanced by the combined regimen. Naloxone (25 mg/h for 12 h) administered alone to 3 ewes in the follicular phase also enhanced LH secretion. In 3 animals treated with FK33-824 during the follicular phase, progesterone remained basal for 14 days after treatment, suggesting that ovulation was blocked. Jugular venous infusion of naloxone (25, 50 or 100 mg/h for 8h) into 5 ewes during the early and mid-luteal phase of the cycle resulted overall in a significant increase in mean plasma LH concentrations and LH episode frequency. To investigate whether endogenous opioids suppress LH release in seasonally anoestrous sheep, naloxone was infused intravenously into mature (25, 50 or 100 mg/h for 8 h) and yearling ewes (12 . 5, 25 or 50 mg/h for 8 h) during early, mid- and late anoestrus and plasma LH concentrations were measured. In the mature ewes, there was a trend for naloxone to increase LH values during the early anoestrous period but naloxone was without effect during mid- and late anoestrus. In the yearlings, naloxone infusion consistently increased plasma LH concentrations as a result of a significant increase in LH episode frequency. These experiments indicate that endogenous opioid peptides probably modulate gonadotrophin secretion during both the follicular and luteal phases of the oestrous cycle. However, the follicular phase of the sheep cycle is of short duration, and there may be residual effects of luteal-phase progesterone during this period. Secondly, there may be an age-dependent effect of naloxone on LH secretion during seasonal anoestrus in the ewe, with opioids playing a part in the suppression of LH in young but not in mature animals.  相似文献   

15.
The effect of low dose peroral Fusarium produced T-2 toxin intake upon the ovarian function was evaluated in ewes (n = 30; Trial 1) and heifers (n = 7; Trial 2). Half of the ewes and all of the heifers were fed rich, acidosis-inducing concentrate. The 30 ewes were divided into 6 groups of 5 animals each. They were given 0, 0.3 or 0.9 mg/day (0, 5 or 15 ug/kg) purified T-2 toxin per os for 21 days (3x2 factorial design). Four of the 7 heifers were fed 9 mg/day (25 ug/kg) of the same purified T-2 toxin for 20 days while 3 remained untreated. The estrus cycles in all animals were synchronized prior to the trials and the T-2 exposure was started in the mid-luteal phase. The acidic condition in the rumen was estimated by the determination of urinary net acid-base excretion. The ovarian activity was followed with blood sampling for progesterone on alternate days (Trial 1) or with ultrasonography and sampling for progesterone daily (Trial 2). All of the heifers and concentrate-fed ewes showed a compensated acidosis, during first two thirds of T-2 exposure. In Trial 1, ovarian malfunction manifested as lower P4 peak concentration in the midluteal phase, shortening of the CL lifespan and prolonged follicular phases. These malfunctions were detected in 3 and 3 ewes fed concentrate and 0.3 mg and 0.9 mg T-2 toxin. Lower P4 peak concentration was observed in 1 ewe fed regular diet and 0.9 mg T-2 toxin. None of the control and acidotic groups (0 mg T-2), or ewes fed regular diet with 0.3 mg T-2 showed any ovarian malfunction. In Trial 2, after PGF2, administration the ovulation occured later and the plasma progesterone level remained low (< 3 nmol/l) for a longer period in T-2 treated heifers, than their untreated control mates (5.0+/-0.7 vs 3.7+/-0.5 d, P<0.05 and 8.3+/-0.4 vs 6.3+/-0.9 d, P<0.01, respectively). These results show that the peroral T-2 intake can significantly retard the folliculus maturation and ovulation and perhaps the subsequent luteinisation also in ruminants kept on concentrate-rich diet.  相似文献   

16.
Incubating washed ram spermatozoa in a modified Brackett's defined medium buffered with Hepes (DM-H) containing 20% of heat-inactivated sheep serum appears to be a reliable method of capacitating sperm for in vitro fertilization. Raising the Ca(++) concentration in the fertilization medium (DM-H-SS) to 10 mM stabilized the fertilization rate of various rams (2). This study was designed to determine if the developmental competence of the oocytes fertilized under such conditions was normal. Thirty-seven ewes, treated with progestagen sponges, were superovulated with porcine follicle stimulating hormone (pFSH: 16 mg). An intramuscular injection of gonadotropin releasing hormone (GnRH: 100 mug); given 24 to 26 h after sponge removal, induced the synchronization of ovulations 24 h later. Ovulated oocytes (n = 229) recovered with flushing of the oviducts were inseminated in vitro and 17 h later either fixed in acetic/alcohol (n = 115) to evaluate fertilization or transferred (n = 114) into 38 synchronized recipients (three oocytes/recipient) to evaluate their developmental competence. Of the fixed oocytes, 82.6% were fertilized and 61.7% were monospermic. Nineteen of the recipient ewes (50%) were pregnant at Day 18, and 16 ewes produced a total of 26 live young (mean: 1.63/ewe). The results showed a high efficiency of in vitro fertilization of ovulated oocytes in sheep following a pFSH-GnRH treatment and the in vivo developmental competence of oocytes fertilized in the presence of elevated Ca(++) concentration.  相似文献   

17.
Embryos were recovered in vivo from donor ewes at day 4 and transferred into superovulated unmated recipient ewes given an injection of PMSG (1600 IU) at day 13.5 of the preceding cycle. The recipient ewes were slaughtered at either 5 (group 1) or 8 (group 2) days after transfer. The recovered blastocysts were transferred back into the original donor ewes and pregnancy was allowed to continue until term. In order to observe the effect of the two transfers on blastocyst viability, the recipient ewes were not superovulated in group 3. Only one transfer was carried out at day 4 in group 4, and then pregnancy was allowed to continue in the superovulated recipient ewes.From day 3 to day 8, 12 or 20 (groups 1, 2 + 3 and 4, respectively), the peripheral blood of recipient ewes was sampled once a day for progesterone assay and four times a day for estradiol-17β assay.At 9 or 12 days, 50, 62 and 68% of the transferred embryos were recovered in groups 1, 2 and 3, respectively. These rates were not statistically different from the pregnancy rate in group 4 (64%). After the second transfer, 43, 54 and 40% of the blastocysts developed into lambs (groups 1, 2 and 3, respectively). There was no statistical difference between these results. However, as we noted in previous studies, in spite of the changes in the uterine medium caused by superovulation and which accelerated blastocyst development, the uterus of superovulated ewes could assume pregnancy.The first transfer decreased the number of pregnant ewes to 65% and the second transfer lowered the number of blastocysts giving lambs to 50%. The level of progesterone varied considerably in recipient ewes giving lambs. When the level of progesterone was low at D4, one embryonic mortality was recorded. The level of estradiol-17β showed large variations and seemed to have no relation to blastocyst survival.  相似文献   

18.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

19.
The objectives of this study were to determine the effect of GnRH analogue (buserelin) or human chorionic gonadotrophin (hCG, Chorulon) treatment on Day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs. After oestrus synchronization with progestagen sponges and eCG, all the animals were mated with fertile rams. Both ewes and ewe lambs (20 per treatment group) were given either normal saline or 4 microg GnRH or 200 IU hCG on Day 12 post-mating. Pre- and post-treatment plasma hormone concentrations were determined in seven pregnant animals per treatment group in samples collected 1h before and 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment. Overall mean progesterone concentrations were higher (P<0.001) in ewes as compared with ewe lambs in saline-treated controls. GnRH or hCG treatment increased (P<0.001) mean plasma progesterone concentrations in both age groups, however, post-treatment concentrations were significantly (P<0.05) higher in ewes than in ewe lambs. Oestradiol concentrations were similar in the two control groups. In ewes, but not in ewe lambs, both GnRH and hCG treatments significantly (P<0.05) increased the mean oestradiol concentrations above pre-treatment levels. Moreover, post-treatment oestradiol concentrations in GnRH- and hCG-treated animals were significantly (P<0.05) higher than those in the saline-treated controls. LH release in response to GnRH treatment was greater (P<0.05) in ewes than in ewe lambs, whereas FSH release in ewes was less (P<0.05) than that of ewe lambs. The effects of GnRH or hCG on conceptus growth and placentation was determined at slaughter on Day 25. In ewes, GnRH treatment increased (P<0.05) luteal weight, amniotic sac width and length, and crown-rump length compared with controls, but had no effect on these parameters in ewe lambs. In ewes, hCG treatment also enhanced (P<0.05) luteal weight, amniotic sac width and length, crown-rump length, embryo weight and number of placentomes as compared with controls. In ewe lambs, there was no difference (P<0.05) between hCG and control groups in luteal weight, embryo weight and amniotic sac width but crown-rump length, amniotic sac length and the number of placentomes forming the placenta were greater (P<0.05). In conclusion, GnRH or hCG treatment on Day 12 of pregnancy can increase ovarian function, conceptus growth and placental attachment in ewes. However, these treatments were less effective in ewe lambs.  相似文献   

20.
Twenty ewes in which maintained corpora lutea had been established were subject to 1 of 3 treatments: denervation of the ovaries by freezing, denervation of the ovaries using the chemical 6-hydroxydopamine, or control. The animals were exposed sequentially to normal (24.5 degrees C), cold (10.7 degrees C), normal (23.8 degrees C), hot (39.4 degrees C) and normal (24.6 degrees C) temperatures, each for 1 week. On the final 3 days of exposure rectal temperatures and heart rates were measured, and on the final day the body weights, respiratory rates, and blood glucose concentrations were measured and a series of 5 blood samples was collected from each ewe for determination of the progesterone concentrations. The progesterone concentration was greatest during the hot period in 8 of the 12 animals, particularly in the ewes with denervated ovaries (6 of the 7 animals). This suggests that high ambient temperatures increase progesterone concentrations non-specifically, and that denervated ovaries are more sensitive to the circulating catecholamines that presumably mediate this effect. The progesterone concentrations were lower (P less than 0.001) in the groups with freezing or chemically denervated ovaries (2.86 and 2.73 ng/ml respectively) than in the control group (3.38 ng/ml), suggesting that the ovarian innervation plays a physiological role in regulating progesterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号