首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O. grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed.  相似文献   

2.
We compare the chromosomal 28S and 5S rDNA patterns of the spined loach C. taenia (2n = 48) from an exclusively diploid population and from a diploid–polyploid population using 28S and 5S rDNA probe preparation and labelling, and fluorescence in situ hybridization (FISH). The 5S rDNA was located in two to three chromosome pairs, and separated from the 28S loci for the males and one female (F1) from the diploid population. Loaches from a diploid–polyploid population, and one female (F2) from the diploid population were characterized by at least one chromosome pair with 5S and 28S overlapping signals. The fishes differed mainly in their number of 28S rDNA loci, located on 3–6 chromosomes. All individuals from both populations were characterized by one acrocentric chromosome bearing a 28S rDNA signal on the telomeres of its long arm. The number of major ribosomal DNA in the karyotype of C. taenia by FISH was always higher than the number of Ag-NORs. Our data confirm the extensive polymorphism of NORs in both populations, as already has been observed in closely related Cobitis species, and less polymorphic 5S rDNA pattern. However, this preliminary result highlights the need for a wider scale study.  相似文献   

3.
采用常规压片法,对风毛菊属(Saussurea)5种植物的染色体数目和核型类型进行分析。结果表明:大耳叶风毛菊(S.macrota)核型公式为2n=2x=26=10m+12sm+4st,属2A型;长梗风毛菊(S.dolichopoda)核型公式为2n=2x=26=14m+8sm+4st,属2A型;川陕风毛菊(S.licentiana)核型公式为2n=2x=28=12m+16sm,属2B型;杨叶风毛菊(S.populifolia)核型公式为2n=2x=28=6m+18sm+4st,属2B型;尾叶风毛菊(S.caudata)核型公式为2n=2x=30=14m+14sm+2st,属2A型。这5种风毛菊属植物中,除大耳叶风毛菊染色体数目和核型类型与前人报道的一致外,其余4种植物的染色体数目和核型类型均为首次报道,并在川陕风毛菊中发现1对B染色体。  相似文献   

4.
Molecular cytogenetic methods have been used to study the controversial phylogenetic relationships between the species Dasypyrum villosum (L.) Candargy (2n=2x=14) and D. breviaristatum (Lindb. f.) Frederiksen (2n=4x=28). Using total genomic DNA from the two species as probes for in situ hybridization to chromosomes, we found that the pericentromeric regions of the chromosome arms of both species are similar, while distal regions show substantial differences. Two dispersed repetitive DNA sequences were isolated: pDbKB45 is distributed along the chromosomes but amplified in the subtelomeric regions of D. breviaristatum chromosomes, while pDbKB49, in both species, is less amplified in terminal regions. Size-separated restriction enzyme digests of DNA showed many repetitive fragments, but few in common between the two species. After probing Southern transfers with D. breviaristatum genomic DNA, all lanes showed similar hybridization patterns although one extra small band was evident in the D. breviaristatum lanes. In contrast, probing with D. villosum DNA showed very substantial differences between the two species. Genomic in situ hybridization to meiotic metaphases from an interspecific hybrid showed seven bivalents of D. breviaristatum origin and seven univalents from D. villosum. We also analysed the physical organization of 5S rDNA, 18S-25S rDNA and a tandemly repeated sequence from rye. Our data support an autotetraploid origin for D. breviaristatum, but its genome and that of D. villosum show extensive differences, so the tetraploid is unlikely to be directly derived from D. villosum. Received: 29 March 1996; in revised form: 28 December 1996 / Accepted: 2 February 1997  相似文献   

5.
 The localization of rRNA genes was studied by fluorescent in situ hybridization (FISH) on chromosomes of the cultivated apple, M.×domestica ‘Pinova’ (2n=34). The 18S/25S rRNA loci were detected in terminal positions of the short arms of two submetacentric and two metacentric chromosome pairs. One 5S rRNA gene locus was found in the proximal region of the short arm of a small metacentric chromosome pair. Received : 21 June 1996 / Accepted : 28 June 1996  相似文献   

6.
Karyotypes of species sects. Linum and Adenolinum have been studied using C/DAPI-banding, Ag-NOR staining, FISH with 5S and 26S rDNA and RAPD analysis. C/DAPI-banding patterns enabled identification of all homologous chromosome pairs in the studied karyotypes. The revealed high similarity between species L. grandiflorum (2n = 16) and L. decumbens by chromosome and molecular markers proved their close genome relationship and identified the chromosome number in L. decumbens as 2n = 16. The similarity found for C/DAPI-banding patterns between species with the same chromosome numbers corresponds with the results obtained by RAPD-analysis, showing clusterization of 16-, 18- and 30-chromosome species into three separate groups. 5S rDNA and 26S rDNA were co-localized in NOR-chromosome 1 in the genomes of all species investigated. In 30-chromosome species, there were three separate 5S rDNA sites in chromosomes 3, 8 and 13. In 16-chromosome species, a separate 5S rDNA site was also located in chromosome 3, whereas in 18-chromosome species it was found in the long arm of NOR-chromosome 1. Thus, the difference in localization of rDNA sites in species with 2n = 16, 2n = 30 and 2n = 18 confirms taxonomists opinion, who attributed these species to different sects. Linum and Adenolinum, respectively. The obtained results suggest that species with 2n = 16, 2n = 18 and 2n = 30 originated from a 16-chromosome ancestor.  相似文献   

7.
Combining molecular cytogenetics and phylogenetic modelling of chromosome number change can shed light on the types of evolutionary changes that may explain the haploid numbers observed today. Applied to the monocot family Araceae, with chromosome numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy has played a larger role than polyploidy in the evolution of the current chromosome numbers. To test this, we carried out molecular cytogenetic analyses in 14 species from 11 genera, using probes for telomere repeats, 5S rDNA and 45S rDNA and a plastid phylogenetic tree covering the 118 genera of the family, many with multiple species. We obtained new chromosome counts for six species, modelled chromosome number evolution using all available counts for the family and carried out fluorescence in situ hybridization with three probes (5S rDNA, 45S rDNA and Arabidopsis‐like telomeres) on 14 species with 2n = 14 to 2n = 60. The ancestral state reconstruction provides support for a large role of descending dysploidy in Araceae, and interstitial telomere repeats (ITRs) were detected in Anthurium leuconerum, A. wendlingeri and Spathyphyllum tenerum, all with 2n = 30. The number of ITR signals in Anthurium (up to 12) is the highest so far reported in angiosperms, and the large repeats located in the pericentromeric regions of A. wendlingeri are of a type previously reported only from the gymnosperms Cycas and Pinus. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 15–26.  相似文献   

8.
Two closely related spruces, Picea abies and Picea omorika, a Balkan paleoendemic species, often share habitats, yet never hybridize in nature. The present study adresses their characteristics such as nuclear DNA content, base composition, heterochromatin and rDNA pattern. The genome size of P. abies was 10% larger than that of P. omorika when assessed by flow cytometry, respectively 2C=37.2 pg and 33.8 pg; although when estimated as total chromosome length it was virtually the same. The heterochromatin Chromomycin-A (CMA)/ DAPI fluorochrome banding patterns of both P. abies and P. omorika are given here for the first time. Simultaneous FISH (fluorescent in situ hybridization) using 18S-26S and 5S rDNA probes revealed 16 18S rDNA sites in P. omorika, 12 18S rDNA sites in P. abies, and a single 5S rDNA locus in both species. The genomes have about 41% GC. The number and position of CMA/DAPI bands and rDNA loci provide good chromosome markers to clarify the karyotypes of the two species. Received: 18 October 2000 / 14 June 2001  相似文献   

9.
 Three lines of the tetraploid wheat Aegilops ventricosa Tausch (2n=4x=28), which contains good resistance to eyespot, were analysed using fluorescent in situ hybridization. Probes used included rDNA, cloned repeated sequences from wheat and rye, simple-sequence repeats (SSRs) and total genomic DNA. The banding patterns produced could be used to distinguish most chromosome arms and will aid in the identification of Ae. ventricosa chromosomes or chromosome segments in breeding programmes. All lines had a single major 18S-25S rDNA site, the nucleolar organizing region (NOR) in chromosome 5N and several minor sites of 18S-25S rDNA and 5S rDNA. A 1NL.3DL, 1NS.3DS translocation was identified, and other minor differences were found between the lines. Received: 11 August 1998 / Accepted: 28 November 1998  相似文献   

10.
Figure 2a–r of the above article is reprinted here at the request of the author because the print quality was not up to standard in the issue. Fig. 2a–r. Localization of 28S rDNA (white arrowheads) by fluorescence in situ hybridization of preparations from various Myrmecia species with different chromosome numbers. a–d, i–m Hybridized in situ and propidium iodide-stained chromosomes. e–h, n–r 4’,6-diamidino-2-phenylindole-stained chromosomes. a, e M. croslandi (2n=4). b, f M. pilosula (2n=22); the inset in b shows repeated layers of rDNA-positive signals in C-band. c, g M. pilosula (2n=23). d, h M. gulosa (2n=38). i, n M. forficata (2n=52). j, o M. mandibularis (2n=56). k, p Myrmecia sp. cf. M. arnoldi (2n=60) i, q M. occidentalis (2n=64) m, r M. simillima (2n=70). Bars represent 10 μm. The long bar in h applies also to d; the short bar in r to all other panels Chromosoma (1996) 105:190–196 Received: 22 March 1996; in revised form: 3 June 1996 / Accepted: 4 June 1996  相似文献   

11.
We describe the chromosomal location of GC-rich regions, 28S and 5S rDNA, core histone genes, and telomeric sequences in the veneroid bivalve species Venerupis aurea and Tapes (Venerupis) rhomboides, using fluorochrome staining with propidium iodide, DAPI and chromomycin A3 (CMA) and fluorescent in situ hybridization (FISH). DAPI dull/CMA bright bands were coincident with the chromosomal location of 28S rDNA in both species. The major rDNA was interstitially clustered at a single locus on the short arms of the metacentric chromosome pair 5 in V. aurea, whereas in T. rhomboides it was subtelomerically clustered on the long arms of the subtelocentric chromosome pair 17. 5S rDNA also was a single subtelomeric cluster on the long arms of subtelocentric pair 17 in V. aurea and on the short arms of the metacentric pair 9 in T. rhomboides. Furthermore, V. aurea showed four telomeric histone gene clusters on three metacentric pairs, at both ends of chromosome 2 and on the long arms of chromosomes 3 and 8, whereas histone genes in T. rhomboides clustered interstitially on the long arms of the metacentric pair 5 and proximally on the long arms of the subtelocentric pair 12. Double and triple FISH experiments demonstrated that rDNA and H3 histone genes localized on different chromosome pairs in the two clam species. Telomeric signals were found at both ends of every single chromosome in both species. Chromosomal location of these three gene families in two species of Veneridae provides a clue to karyotype evolution in this commercially important bivalve family.  相似文献   

12.
权有娟  李想  袁飞敏  刘博  陈志国 《广西植物》2021,41(12):1988-1995
为精确地识别藜属植物染色体组的核型特征,该文研究了4种来自青海高原的野生藜属植物(灰绿藜、藜、菊叶香藜及杂配藜)和1种从美国引进的栽培藜麦品种PI614932-HX(3)基于染色体荧光原位杂交(rDNA FISH)的核型。利用5S rDNA和45S rDNA对5种藜属植物有丝分裂中期的染色体进行FISH研究。藜属植物的核型分析结果表明:(1)藜属植物中存在二倍体(2n=2x=18)和四倍体(2n=4x=36)两种倍性,藜麦和灰绿藜为四倍体,其余3种为二倍体。(2)藜麦、灰绿藜、藜、菊叶香藜及杂配藜的核型公式分别为2n=4x=36=34m(2AST)+2sm,2n=4x=36=32m(4AST)+4sm,2n=2x=18=16m(4AST)+2sm,2n=2x=18=18m及2n=2x=18=16m+2sm。(3)染色体由大部分的中部着丝粒染色体(m)和少部分近中部着丝粒染色体(sm)组成。(4)核型类型除了菊叶香藜为1B以外,其余均属于2B类型。(5)在藜麦、灰绿藜及藜中具有分布位置不同、数量不等的双随体。5S rDNA、45S rDNA FISH结果表明:(1)藜麦和灰绿藜的染色体上存在2对5S rDNA位点和1对45S rDNA位点,藜、杂配藜的染色体上存在1对5S rDNA位点和1对45S rDNA位点,菊叶香藜的染色体上只存在1对5S rDNA位点。(2)5S rDNA和45S rDNA位点均位于染色体的短臂上。该研究首次获得了藜属植物基于5S rDNA和45S rDNA荧光原位杂交核型,为藜属植物亲缘关系研究和细胞生物学研究提供了分子细胞遗传学依据。  相似文献   

13.
A cytogenetic study was conducted on four species of the genus Urvillea (Sapindaceae, Paullinieae): U. chacoensis Hunz., U. filipes Radlk. and U. ulmacea Kunth of the Urvillea section and U. laevis Radlk. of the Stenelytron section. The chromosome numbers in U. chacoensis (2n = 22) and U. laevis (2n = 24) were confirmed, and new chromosome numbers are reported for U. filipes with 2n = 22 and U. ulmacea with 2n = 88. Additionally, data on interphase nuclear structure, chromosome banding patterns (C-Giemsa and C-CMA3/DAPI) and FISH with rDNA probes are also presented. The distribution of AT- and GC-rich regions and the physical mapping of ribosomal genes (45S and 5S rDNA sites) were established for the first time in these Urvillea species. Sections of Urvillea are cytogenetically differentiated according to basic chromosome number, where x = 11 in the section Urvillea and x = 12 in the section Stenelytron. This first section displayed an important karyotypic feature, the occurrence of large AT- and GC-rich bands at terminal chromosomal regions. The Urvillea section showed polyploidy and its species were differentiated by their banding patterns. Urvillea chacoensis showed several terminal AT-rich bands, while terminal AT- and GC-rich bands were both found in U. ulmacea. However, the section Stenelytron did not exhibit this banding pattern. The 45S rDNA sites appeared always associated with GC-rich regions and they were numerically variable among species, being located or not the same chromosome 5S rDNA sites. Variation in the repetitive DNA distribution and their role in karyotype differentiation among these Urvillea species are discussed.  相似文献   

14.
Three endemic Centaurea species from North Africa are investigated for the first time by chromomycin fluorochrome banding for GC-rich DNA distribution, fluorescence in situ hybridization for physical mapping of rRNA genes, and flow cytometry for genome-size assessment. Investigated species belong to three different sections and possess three basic chromosome numbers: C. tougourensis subsp. tougourensis 2n = 4x = 36 (x = 9), C. musimonum 2n = 2x = 20 (x = 10), and C. maroccana 2n = 2x = 24 (x = 12). The number and distribution of chromomycin positive bands (CMA+) and 18S-5.8S-26S (35S) rDNA loci were different among investigated species and ranged from 6 to 80 chromomycin bands and from 2 to 6 35S rDNA loci. The three species have just one 5S rDNA locus at intercalary position on a separate chromosome pairs, except in the case of C. musimonum in which both rDNA loci were localized on the same chromosome. All rDNA loci were co-localized with CMA+ bands, except three 35S in C. musimonum. Genome size ranged from 2C = 1.66 to 2C = 2.86 pg in diploid species (C. musimonum and C. maroccana, respectively) and to 2C = 4.51 pg in tetraploid C. tougourensis subsp. tougourensis.  相似文献   

15.
The genera Grindelia Willd. and Haplopappus Cass. belong to the family Asteraceae - Astereae and are distributed in America and South America, respectively. Previous cytotaxonomic studies showed for South American species of Grindelia 2n=12 and for Haplopappus 2n=10 and 2n=12. Both Grindelia species (G. anethifolia, G. prunelloides), newly analyzed with molecular-cytological methods, exhibited symmetric karyotypes (AsI %=55.46 and 55.95) with metacentric chromosome sets (5m + 1m-sat) and 2n=12 chromosomes. The NOR was detected after fluorescence in situ hybridization (FISH) with 18/25S rDNA in the satellite chromosome 2. In contrast H. Happlopappus glutinosus, H. grindeloides and H. stolpii showed exclusively a higher asymmetric index (66.83%, 67.01% and 68.87%, respectively) with submetacentric chromosome sets (4sm + 1sm–sat). The sat-chromosomes 3 of H. glutinosus and H. grindelioides were both significantly different in their length from chromosomes 2 and 4. Furthermore in Grindelia the FISH with 5S rDNA could estimate signals in the short arms of chromosomes 3 or 4, that were not significantly differentiated in their length. Contrary to these findings in Grindelia, the position of 5S rDNA in Haplopappus was detected in the long arms of chromosome 1 (H. grindelioides and H. stolpii) and chromosome 2 (with two different loci) and chromosome 4 of H. glutinosus. The lengths of all measured chromosome arms with 5S rDNA were significantly different to those of the neighbours in the karyotypes. The two-color FISH of 5S and 18/25S rDNA had provided clear karyotypic markers for three (Haplopappus glutinosus) and two (H. grindelioides and H. stolpii) chromosomes. The number and position of rDNA signals were relatively highly conserved in the investigated five species without the double marked chromosome 2 of H. glutinosus, which shows an evolutionary dynamic of this 5S rRNA specific gene cluster. This investigation supports the assumption that the evolution of New World members of Grindelia and Haplopappus has not been accompanied by large karyotypic changes, but small chromosomal rearrangements have undoubtedly occurred (e.g. 5S rDNA localizations).  相似文献   

16.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

17.
The genus Peridinium Ehrenb. comprises a group of highly diversified dinoflagellates. Their morphological taxonomy has been established over the last century. Here, we examined relationships within the genus Peridinium, including Peridinium bipes F. Stein sensu lato, based on a molecular phylogeny derived from nuclear rDNA sequences. Extensive rDNA analyses of nine selected Peridinium species showed that intraspecies genetic variation was considerably low, but interspecies genetic divergence was high (>1.5% dissimilarity in the nearly complete 18S sequence; >4.4% in the 28S rDNA D1/D2). The 18S and 28S rDNA Bayesian tree topologies showed that Peridinium species grouped according to their taxonomic positions and certain morphological characters (e.g., epithecal plate formula). Of these groups, the quinquecorne group (plate formula of 3′, 2a, 7″) diverged first, followed by the umbonatum group (4′, 2a, 7″) and polonicum group (4′, 1a, 7″). Peridinium species with a plate formula of 4′, 3a, 7″ diverged last. Thus, 18S and 28S rDNA D1/D2 sequences are informative about relationships among Peridinium species. Statistical analyses revealed that the 28S rDNA D1/D2 region had a significantly higher genetic divergence than the 18S rDNA region, suggesting that the former as DNA markers may be more suitable for sequence‐based delimitation of Peridinium. The rDNA sequences had sufficient discriminative power to separate P. bipes f. occultaum (Er. Lindem.) M. Lefèvre and P. bipes f. globosum Er. Lindem. into two distinct species, even though these taxa are morphologically only marginally discriminated by spines on antapical plates and the shape of red bodies during the generation of cysts. Our results suggest that 28S rDNA can be used for all Peridinium species to make species‐level taxonomic distinctions, allowing improved taxonomic classification of Peridinium.  相似文献   

18.
We have used combined fluorescent and genomic in situ hybridization (FISH/GISH) together with 4′,6-diamidino-2-phenylindole (DAPI) counterstaining to determine simultaneously the chromosome integration site and subgenomic allocation of a transgene in-sert in amphidiploid tobacco (Nicotiana tabacum, 2n = 4x = 48). The procedure provides sufficient information on physical markers to identify at least 20 out of 24 chromosome pairs of two tobacco cultivars commonly used in studies on transgene expression and silencing (cv. Petit Havana SR1 and cv. Gatersleben). The chromosomes can be distinguished on the basis of diploid parental ancestry, size, morphology, the presence of rDNA loci and/or intergenomic exchanges, and the DAPI banding pattern, which is shown here for the first time for N. tabacum. From a single ISH experiment, it should now be possible in most cases to identify a tobacco chromosome carrying a transgene insert, thus permitting systematic studies of how the chromosome location of transgenes influences expression levels. Received: 23 April 1996; in revised form: 11 June 1996 / Accepted: 18 June 1996  相似文献   

19.
We have analyzed the phylogenetic and genomic relationships in the genus Setaria Beauv. including diploid and tetraploid species, by means of the molecular diversity of the 5S rDNA spacer and chromosomal organization of the 5S and 18S-5.8S-25S rDNA genes. PCR amplification of the 5S rDNA sequences gave specific patterns. All the species studied here share a common band of about 340 bp. An additional band of an approximately 300-bp repeat unit was found for Setaria verticillata and the Chinese accessions of Setaria italica and Setaria viridis. An additional band of 450 bp was found in the sole species Setaria faberii. Fluorescent in situ hybridization was used for physical mapping of the 5S and 18S-5.8S-25S rDNA genes and showed that they are localized at two separate loci with no polymorphism of chromosome location among species. Two chromosome pairs carrying the 5S and 18S-5.8S-25S rDNA clusters can now be unambiguously identified using FISH. Phylogenetic trees based on the variation of the amplified 5S rDNA sequences showed a clear separation into four groups. The clustering was dependent on the genomic composition (genome A versus genome B) and confirmed the closest relationship of S. italica and S. viridis accessions from the same geographical region. Our results confirm previous hypotheses on the domestication centers of S. italica. They also show the wide difference between the A and B genomes, and even clarify the taxonomic position of S. verticillata. Received: 28 August 2000 / Accepted: 27 January 2001  相似文献   

20.
Absract  The physical locations of the 5S and 18S-25S rDNA sequences were examined in nine wild Hordeum species and cytotypes by double-target in situ hybridization using digoxigenin-labelled 5S rDNA and biotin-labelled 18S-25S rDNA as probes. H. vulgare ssp. spontaneum (2n=2x=14; I-genome) had a similar composition of 5S and 18S-25S rDNA to cultivated barley (H. vulgare ssp. vulgare, I-genome), with two major 18S-25S rDNA sites and minor sites on four of the other five chromosomes; three chromosomes had 5S rDNA sites. The closely related H. bulbosum (2x; also I-genome) showed only one pair of 5S rDNA sites and one pair of 18S-25S rDNA sites on different chromosomes. Four wild diploid species, H. marinum (X-genome), H. glaucum and H. murinum (Y-genomes) and H. chilense (H-genome), differed in the number (2–3 pairs), location, and relative order of 5S and the one or two major 18S-25S rDNA sites, but no minor 18S-25S rDNA sites were observed. H. murinum 4x had three chromosome pairs carrying 5S rDNA, while the diploid had only a single pair. Two other tetraploid species, H. brachyantherum 4x and H. brevisubulatum 4x (both considered to have H-type genomes), had minor 18S-25S rDNA sites, as well as the major sites. Unusual double 5S rDNA sites – two sites on one chromosome arm separated by a short distance – were found in the American H-genome species, H. chilense and H. brachyantherum 4x. The results indicate that the species H. brachyantherum 4x and H. brevisubulatum 4x have a complex evolutionary history, probably involving the multiplication of minor rDNA sites (as in H. vulgare sensu lato), or the incorporation of both I and H types of genome. The rDNA markers are useful for an investigation of chromosome evolution and phylogeny. Received: 9 February 1998 / Accepted: 14 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号