首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A 2,3-dihydroxybiphenyl (2,3-DHBP) dioxygenase gene from a Rhodococcus sp. strain, named RrbphCI and involved in the degradation of polychlorinated biphenyls (PCBs), was synthesized. RrbphCI was expressed in Escherichia coli and its encoded enzyme was purified. SDS–PAGE analysis indicated that the size of the protein encoded by RrbphCI was about 32 kDa. The activity of the 2,3-DHBP dioxygenase was 82.8 U/mg when the substrate was 2,3-DHBP, with optimum pH 8.0 at 30°C, and optimum temperature was 40°C at pH 8.0. The RrbphCI gene was transformed into Pseudomonas putida strain EG11, to determine the ability of the enzyme to degrade 2,3-DHBP. The wild type EG11 degraded 61.86% of supplied 2,3-DHBP and the transformed EG11 (hosting the RrbphCI gene) utilized 52.68% after 2 min of treatment at 30°C. The overexpressed and purified enzyme was able to degrade 2,3-DHBP. The 2,3-DHBP dioxygenase is a key enzyme in the PCB degradation pathway. RrbphCI and its encoded 2,3-DHBP dioxygenase may have transgenic applications in bioremediation of PCBs.  相似文献   

2.
3.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

4.
The major satellite DNAs of the dioecious plant Silene latifolia are represented by the repetitive sequences X43.1, RMY1 and members of the SacI family, which are located at the distal ends of chromosomes. To characterize the satellite DNAs at the distal ends of the chromosomes in S. latifolia (Sl-distal-satDNA), we isolated a bacterial artificial chromosome clone (number 15B12) that contained multiple repeat sequences with KpnI restriction sites, and subcloned a portion of this sequence into a plasmid vector. Sequencing analysis confirmed that recognition or degenerate sites for KpnI were repeated 26 times at intervals of 310–324 bp in the inserted DNA. The phylogenetic tree that was constructed with the 26 KpnI repeat units contained clustered branches that were independent of the SacI family. It is clear that the KpnI repeat belongs to an Sl-distal-satDNA family that is distinct from the SacI family. We designated this family as "KpnI" after the restriction enzyme that does not have a site in the SacI family. Multi-colored fluorescent in situ hybridization was performed with the KpnI family and RMY1 probes under high stringency conditions. The results suggest that chromosome 7 is unique and that it carries the KpnI family at only one end.  相似文献   

5.
Basu A  Phale PS 《Biodegradation》2008,19(1):83-92
Pseudomonas putida CSV86 utilizes naphthalene (Nap), salicylate (Sal), benzyl alcohol (Balc), and methylnaphthalene (MN) preferentially over glucose. Methylnaphthalene is metabolized by ring-hydroxylation as well as side-chain hydroxylation pathway. Although the degradation property was found to be stable, the frequency of obtaining NapSalMNBalc phenotype increased to 11% in the presence of curing agents. This property was transferred by conjugation to Stenotrophomonas maltophilia CSV89 with a frequency of 7 × 10−8 per donor cells. Transconjugants were Nap+Sal+MN+Balc+ and metabolized MN by ring- as well as side-chain hydroxylation pathway. Transconjugants also showed the preferential utilization of aromatic compounds over glucose indicating transfer of the preferential degradation property. The transferred properties were lost completely when transconjugants were grown on glucose or 2YT. Attempts to detect and isolate plasmid DNA from CSV86 and transconjugants were unsuccessful. Transfer of degradation genes and its subsequent loss from the transconjugants was confirmed by PCR using primers specific for 1,2-dihydroxynaphthalene dioxygenase and catechol 2,3-dioxygenase (C23O) as well as by DNA–DNA hybridizations using total DNA as template and C23O PCR fragment as a probe. These results indicate the involvement of a probable conjugative element in the: (i) metabolism of aromatic compounds, (ii) ring- and side-chain hydroxylation pathways for MN, and (iii) preferential utilization of aromatics over glucose.  相似文献   

6.
In-situ bioremediation of petroleum waste sludge in landfarming sites of Motor Oil Hellas (petroleum refinery) was studied by monitoring the changes of the petroleum composition of the waste sludge, as well as the changes in the structure of the microbial community, for a time period of 14 months. The analyses indicated an enhanced degradation of the petroleum hydrocarbons in the landfarming areas. A depletion of n-alkanes of approximately 75–100% was obtained. Marked changes of the microbial communities of the landfarms occurred concomitantly with the degradation of the petroleum hydrocarbons. The results obtained from terminal restriction fragment length polymorphism (T-RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rRNA genes demonstrated that bacteria originating from the refinery waste sludge and newly selected bacteria dominated the soil bacterial community during the period of the highest degradation activity. However, the diversity of the microbial community was decreased with increased degradation of the petroleum hydrocarbons contained in the landfarms. T-RFLP fingerprints of bacteria of the genera Enterobacter and Ochrobactrum were detected in the landfarmed soil over the entire treatment period of 14 months. In contrast, the genus Alcaligenes appeared in significant numbers only within the 10 month old landfarmed soil. Genes encoding catechol 2,3-dioxygenase (subfamily I.2.A) were detected only in DNA of the untreated refinery waste sludge. However, none of the genes known to encode the enzymes alkane hydroxylase AlkB, catechol 2,3-dioxygenase (subfamily I.2.A) and naphthalene dioxygenase nahAc could be detected in DNA of the landfarmed soils.  相似文献   

7.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize.  相似文献   

8.
Genes in the odd-skipped (odd) family encode a discrete subset of C2H2 zinc finger proteins that are widely distributed among metazoan phyla. Although the initial member (odd) was identified as a Drosophila pair-rule gene, various homologs are expressed within each of the three germ layers in complex patterns that suggest roles in many pathways beyond segmentation. To further investigate the evolutionary history and extant functions of genes in this family, we have initiated a characterization of two homologs, odd-1 and odd-2, identified in the genome of the nematode, Caenorhabditis elegans. Sequence comparisons with homologs from insects (Drosophila and Anopheles) and mammals suggest that two paralogs were present within an ancestral metazoan; additional insect paralogs and both extant mammalian genes likely resulted from gene duplications that occurred after the split between the arthropods and chordates. Analyses of gene function using RNAi indicate that odd-1 and odd-2 play essential and distinct roles during gut development. Specific expression of both genes in the developing intestine and other cells in the vicinity of the gut was shown using GFP-reporters. These results indicate primary functions for both genes that are most like those of the Drosophila paralogs bowel and drumstick, and support a model in which gut specification represents the ancestral role for genes in this family.Edited by C. Desplan  相似文献   

9.
A class of ribonucleases termed S-RNases, which control the pistil expression of self-incompatibility, represents the only known functional products encoded by the S locus in species from the Solanaceae, Scrophulariaceae and Rosaceae. Previously, we identified a pollen-specific F-box gene, AhSLF (S locus F-box)-S2, very similar to S2-RNase in Antirrhinum, a member of the Scrophulariaceae. In addition, AhSLF-S2 also detected the presence of its homologous DNA fragments. To identify these fragments, we constructed two genomic DNA libraries from Antirrhinum self-incompatible lines carrying alleles S1S5 and S2S4, respectively, using a transformation-competent artificial chromosome (TAC) vector. With AhSLF-S2-specific primers, TAC clones containing both AhSLF-S2 and its homologs were subsequently identified (S2TAC, S5TACa, S4TAC, and S1TACa). DNA blot hybridization, sequencing and segregation analyses revealed that they are organized as single allelic copies (AhSLF-S2, -S1, -S4 and -S5) tightly linked to the S-RNases. Furthermore, clusters of F-box genes similar to AhSLF-S2 were identified. In total, three F-box genes (AhSLF-S2, -S2A and -S2C) in S2TAC (51 kb), three (AhSLF-S4, -S4A and -S4D) in S4TAC (75 kb), two (AhSLF-S5 and -S5A) in S5TACa (55 kb), and two (AhSLF-S1 and -S1E) in S1TACa (71 kb), respectively, were identified. Paralogous copies of these genes show 38–54% identity, with allelic copies sharing 90% amino acid identity. Among these genes, three (AhSLF-S2C, -S4D and -S1E) were specifically expressed in pollen, similar to AhSLF-S2, implying that they likely play important roles in pollen, whereas three AhSLF-SA alleles showed no detectable expression. In addition, several types of retroelements and transposons were identified in the sequenced regions, revealing some detailed information on the structural diversity of the S locus region. Taken together, these results indicate that both single allelic and tandemly duplicated genes are associated with the S locus in Antirrhinum. The implications of these findings in evolution and possible roles of allelic AhSLF-S genes in the self-incompatible reaction are discussed in species like Antirrhinum.Sequence data from this article have been deposited with the EMBL/GenBank databases under accession numbers AJ300474, AJ515534, AJ515536 and AJ515535  相似文献   

10.
11.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   

12.
The Ngrol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ngrol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ngrol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ngrol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ngrol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ngrol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ngrol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.Seishiro Aoki is the recipient of the Botanical Society Award for Young Scientist, 2002.  相似文献   

13.
Recent studies of glucose (Glc) sensing and signaling have revealed that Glc acts as a critical signaling molecule in higher plants. Several Glc sensing-defective Arabidopsis mutants have been characterized in detail, and the corresponding genes encoding Glc-signaling proteins have been isolated. However, the full complexity of Glc signaling in higher plants is not yet fully understood. Here, we report the identification and characterization of a new Glc-insensitive mutant, gaolaozhuangren2 (glz2), which was isolated from transposon mutagenesis experiments in Arabidopsis. In addition to its insensitivity to Glc, the glz2 plant exhibits several developmental defects such as short stature with reduced apical dominance, short roots, small and dark-green leaves, late flowering and female sterility. Treatment with 4% Glc blocked expression of the OE33 gene in wild-type plants, whereas expression of this gene was unchanged in the glz2 mutant plants. Taken together, our results suggest that the GLZ2 gene is required for normal glucose response and development of Arabidopsis.Mingjie Chen and Xiaoxiang Xia contributed equally to this work.  相似文献   

14.
Catechol 2,3-dioxygenase (C23O), an extradiol-type dioxygenase cleaving the aromatic C—C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxy-muconic semialdehyde. Based on a curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from Pseudomonas aeruginosa ZD 4-3, which was able to degrade both single and bicyclic compounds via a meta-cleavage path-way. A complete nucleotide sequence analysis of the C23O revealed that it has one ORF, which showed a strong overall amino acid similarity to the known gram-negative bacterial mesophilic C23Os. The alignment analysis indicated a distinct difference between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases that cleave bicyclic aromatic compounds. The heterogeneous expression of the pheB gene in E. Coli BL21(DE3) demonstrated that this C23O possesses a meta-cleavage activity.From Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 802–809.Original English Text Copyright © 2004 by Chen, Liu, Zhu, Jin.This article was submitted by the authors in English.  相似文献   

15.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

16.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production of F. psychrophilum recombinant proteins.  相似文献   

17.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

18.
The Drosophila melanogaster broad locus is essential for normal metamorphic development. Broad encodes three genetically distinct functions (rbp, br, and 2Bc) and a family of four zinc-finger DNA-binding proteins (Z1-Z4). The Z1, Z2, and Z3 protein isoforms are primarily associated with the rbp, br, and 2Bc genetic functions respectively. The Z4 protein isoform also provides some rbp genetic function, however an essential function for the Z4 isoform in metamorphosis has not been identified. To determine the degree of conservation of Z4 function between the tobacco hornworm Manduca sexta and Drosophila we generated transgenic Drosophila expressing the Manduca broad Z4 isoform and used this transgene to rescue rbp mutant lethality during Drosophila metamorphosis. We find that the Manduca Z4 protein has significant biological activity in Drosophila with respect to rescue of rbp-associated lethality. There was also some overlap in effects on cuticle gene expression between the Manduca Z4 and Drosophila Z1 isoforms that was not shared with the Drosophila Z4 isoform. Our findings show that Z4 function has been conserved over the 260-million-year period since the divergence of Diptera and Lepidoptera, and are consistent with the hypothesis that the Drosophila Z4 and Manduca Z4 isoforms have essential roles in metamorphosis.Edited by M. Akam  相似文献   

19.
Ralstonia eutropha JMP134 possesses two sets of similar genes for degradation of chloroaromatic compounds, tfdCDEFB (in short: tfd I cluster) and tfdD II C II E II F II B II (tfd II cluster). The significance of two sets of tfd genes for the organism has long been elusive. Here, each of the tfd genes in the two clusters on the original plasmid pJP4 was replaced by double recombination with a gene fragment in which a kanamycin resistance gene was inserted into the respective tfd genes reading frame. The insertion mutants were all tested for growth on 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), and 3-chlorobenzoate (3-CBA). None of the tfdD II C II E II F II B II genes appeared to be essential for growth on 2,4-D or on 3-CBA. Mutations in tfdC, tfdD and tfdF also did not abolish but only retarded growth on 2,4-D, indicating that they were redundant to some extent as well. Of all tfd genes tested, only tfdE and tfdB were absolutely essential, and interruption of those two reading frames abolished growth on 2,4-D, 3-CBA (tfdE only), and MCPA completely. Interestingly, strains with insertion mutations in the tfd I cluster and those in tfdD II , tfdC II , tfdE II and tfdB II were severely effected in their growth on MCPA, compared to the wild-type. This indicated that not only the tfd I cluster but also the tfd II cluster has an essential function for R. eutropha during growth on MCPA. In contrast, insertion mutation of tfdD II resulted in better growth of R. eutropha JMP134 on 3-CBA, which is most likely due to the prevention of toxic metabolite production in the absence of TfdDII activity.  相似文献   

20.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved. Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号