首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research was to study the cerebral hemodynamics reaction to step increase of physical exercises intensity during bicycle ergometer test in young healthy male subjects. Hemodynamics parameters were registered with the transcranial Doppler ultrasonography of middle cerebral artery (MCA) prior to the study and during the last seconds of every step of physical exercise. Cerebral hemodynamics response to physical exercise was characterized by a significant increase of peak systolic blood velocity in the MCA up to 0.25 W/kg of the body weight (90 rpm with regard to 0 W/kg) without further increase of blood velocity in the same physical exercise becoming more intensive up to 0.5 W/kg of the body weight. The stabilization mechanism of blood velocity in cerebral arteries in case of physical exercise increase and, hence, the autoregulation mechanism of cerebral circulation means that the increase of regional cerebral vascular resistance depends on the value of arterial pressure. The autoregulation mechanism of cerebral circulation starts working with he exercise intensity of 0.25 W/kg and the value of systolic blood pressure about 140-145 mm Hg.  相似文献   

2.
The aim of this research was to study the cerebral hemodynamic reaction to stepped increase of physical exercises during the bicycle ergometer test in 12 young healthy male patients. The starting value of exercise was 0.25 W/kg of the body weight, with the 0.25 W/kg increase at every subsequent step up to the value of 1.75 W/kg of the body weight. Hemodynamic parameters were registered with the Doppler ultrasonography of middle cerebral artery before the study, during the last 10 seconds of every step, and during the 3 minutes of restorative period with a 1-minute interval. The peak systolic blood flow increase in the middle cerebral artery was observed only as the result of low intensity exercises (0.25 W/kg of the body weight). The blood pressure (BP) restoration occurred by the end of the third minute of the rest, while the cerebral hemodynamic indices became normal during the first minute. The research revealed a correlation between increases of vascular resistance caused by physical exercises and the BP, and no correlation between increases of peak systolic blood flow and BP, which displays the phenomenon of cerebral circulation autoregulation.  相似文献   

3.
Exercise challenges cerebral autoregulation (CA) by a large increase in pulse pressure (PP) that may make systolic pressure exceed what is normally considered the upper range of CA. This study examined the relationship between systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) and systolic (V(s)), diastolic (V(d)). and mean (V(m)) middle cerebral artery (MCA) blood flow velocity during mild, moderate, and heavy cycling exercise. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated using transfer function analysis. PP increased by 37% and 57% during moderate and heavy exercise, respectively (P < 0.05), and the pulsatility of MCA V increased markedly. Thus exercise increased MCA V(m) and V(s) (P < 0.05) but tended to decrease MCA V(d) (P = 0.06). However, the normalized low-frequency transfer function gain between MAP and MCA V(m) and between SBP and MCA V(s) remained unchanged from rest to exercise, whereas that between DBP and MCA V(d) increased from rest to heavy exercise (P < 0.05). These findings suggest that during exercise, CA is challenged by a rapid decrease rather than by a rapid increase in blood pressure. However, dynamic CA remains able to modulate blood flow around the exercise-induced increase in MCA V(m), even during high-intensity exercise.  相似文献   

4.
We sought to examine the regulation of cerebral blood flow during 10 min of recovery from mild, moderate, and heavy cycling exercise by measuring middle cerebral artery blood velocity (MCA V). Transfer function analyses between changes in arterial blood pressure and MCA V were used to assess the frequency components of dynamic cerebral autoregulation (CA). After mild and moderate exercise, the decreases in mean arterial pressure (MAP) and mean MCA V (MCA Vm) were small. However, following heavy exercise, MAP was rapidly and markedly reduced, whereas MCA Vm decreased slowly (-23 +/- 4 mmHg and -4 +/- 1 cm/s after 1 min for MAP and MCA Vm, respectively; means +/- SE). Importantly, for each workload, the normalized low-frequency transfer function gain between MAP and MCA Vm remained unchanged from rest to exercise and during recovery, indicating a maintained dynamic CA. Similar results were found for the systolic blood pressure and systolic MCA V relationship. In contrast, the normalized low-frequency transfer function gain between diastolic blood pressure and diastolic MCA V (MCA Vd) increased from rest to exercise and remained elevated in the recovery period (P < 0.05). However, MCA Vd was quite stable on the cessation of exercise. These findings suggest that MCA V is well maintained following mild to heavy dynamic exercise. However, the increased transfer function gain between diastolic blood pressure and MCA Vd suggests that dynamic CA becomes less effective in response to rapid decreases in blood pressure during the initial 10 min of recovery from dynamic exercise.  相似文献   

5.
Lifting of a heavy weight may lead to "blackout" and occasionally also to cerebral hemorrhage, indicating pronounced consequences for the blood flow through the brain. We hypothesized that especially strenuous respiratory straining (a Valsalva-like maneuver) associated with intense static exercise would lead to a precipitous rise in mean arterial and central venous pressures and, in turn, influence the middle cerebral artery blood velocity (MCA V(mean)) as a noninvasive indicator of changes in cerebral blood flow. In 10 healthy subjects, MCA V(mean) was evaluated in response to maximal static two-legged exercise performed either with a concomitantly performed Valsalva maneuver or with continued ventilation and also during a Valsalva maneuver without associated exercise (n = 6). During static two-legged exercise, the largest rise for mean arterial pressure and MCA V(mean) was established at the onset of exercise performed with a Valsalva-like maneuver (by 42 +/- 5 mmHg and 31 +/- 3% vs. 22 +/- 6 mmHg and 25 +/- 6% with continued ventilation; P < 0.05). Profound reductions in MCA V(mean) were observed both after exercise with continued ventilation (-29 +/- 4% together with a reduction in the arterial CO(2) tension by -5 +/- 1 Torr) and during the maintained Valsalva maneuver (-21 +/- 3% together with an elevation in central venous pressure to 40 +/- 7 mmHg). Responses to performance of the Valsalva maneuver with and without exercise were similar, reflecting the deterministic importance of the Valsalva maneuver for the central and cerebral hemodynamic response to intense static exercise. Continued ventilation during intense static exercise may limit the initial rise in arterial pressure and may in turn reduce the risk of hemorrhage. On the other hand, blackout during and after intense static exercise may reflect a reduction in cerebral blood flow due to expiratory straining and/or hyperventilation.  相似文献   

6.
Dynamic cerebral autoregulation (CA) is challenged by exercise and may become less effective when exercise is exhaustive. Exercise may increase arterial glucose concentration, and we evaluated whether the cerebrovascular response to exercise is affected by hyperglycemia. The effects of a hyperinsulinemic euglycemic clamp (EU) and hyperglycemic clamp (HY) on the cerebrovascular (CVRI) and systemic vascular resistance index (SVRI) responses were evaluated in seven healthy subjects at rest and during rhythmic handgrip exercise. Transfer function analysis of the dynamic relationship between beat-to-beat changes in mean arterial pressure and middle cerebral artery (MCA) mean blood flow velocity (V(mean)) was used to assess dynamic CA. At rest, SVRI decreased with HY and EU (P < 0.01). CVRI was maintained with EU but became reduced with HY [11% (SD 3); P < 0.01], and MCA V(mean) increased (P < 0.05), whereas brain catecholamine uptake and arterial Pco(2) did not change significantly. HY did not affect the normalized low-frequency gain between mean arterial pressure and MCA V(mean) or the phase shift, indicating maintained dynamic CA. With HY, the increase in CVRI associated with exercise was enhanced (19 +/- 7% vs. 9 +/- 7%; P < 0.05), concomitant with a larger increase in heart rate and cardiac output and a larger reduction in SVRI (22 +/- 4% vs. 14 +/- 2%; P < 0.05). Thus hyperglycemia lowered cerebral vascular tone independently of CA capacity at rest, whereas dynamic CA remained able to modulate cerebral blood flow around the exercise-induced increase in MCA V(mean). These findings suggest that elevated blood glucose does not explain that dynamic CA is affected during intense exercise.  相似文献   

7.
Regular trends in changes in cerebral and central hemodynamics were studied in 28 healthy men aged 20–26 years during active orthostatic stress. The hemodynamic parameters of the blood flow in the middle cerebral artery (MCA), systemic hemodynamics, and parameters of pulmonary ventilation were recorded simultaneously for 10 min while a subject was in a horizontal position and for the same period after the position had been changed to vertical (active rising). In healthy subjects, several types of responses of cerebral and central hemodynamics were detected during active orthostasis.  相似文献   

8.
Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L/P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1.0) with a corresponding MCA Vmean of 46.7 +/- 4.5 cm/s. During rhythmic handgrip the increase in MCA Vmean to 51.2 +/- 4.6 cm/s was related to the increased L/P ratio (23.8 +/- 2.5; r2 = 0.79; P < 0.01). Hyperglycemia increased arterial lactate and pyruvate to 1.9 +/- 0.2 mmol/l and 115 +/- 4 micromol/l, respectively, but it did not significantly influence the L/P ratio or MCA Vmean at rest or during exercise. Conversely, MCA Vmean did not correlate significantly, neither to the arterial lactate nor to the pyruvate concentrations. These results support that the arterial plasma L/P ratio modulates cerebral blood flow during cerebral activation independently from the plasma glucose concentration.  相似文献   

9.
This study examined the consistency between three indexes of cerebral blood flow (CBF) obtained by using transcranial Doppler ultrasound in eight human volunteers. Each subject undertook three sessions of graded exercise, consisting of 6 min of rest, 6 min at 20% of maximal oxygen uptake (VO2 max), 6 min at 40% VO2 max, and 6 min of recovery. Values were obtained every 10 ms for the velocity associated with the maximal frequency of the Doppler shift (VP), the intensity-weighted mean velocity (VIWM), and total signal power (P). Beat-by-beat averages for three indexes (P, IWM, provided significantly different results for the percent changes in CBF with exercise. At 20% of VO2 max, P and IWM showed significant (P < 0.05) increases of 8 and 6%, respectively, whereas showed a nonsignificant increase of 3%. At 40% of VO2 max, P and IWM showed significant (P < 0.05) increases of 14 and 8%, respectively, whereas showed a nonsignificant increase of 4%. Our results suggest that the increase in CBF with exercise that has been reported with transcranial Doppler ultrasound needs to be treated with caution, as much of the response could arise as an artifact from the increase in amplitude and frequency of the arterial pressure waveform.  相似文献   

10.
Cerebral blood flow increases with acute exposure to high altitude, but the effect of hypoxia on the cerebral circulation at rest and during exercise appears influenced by the duration of high-altitude exposure. To determine whether internal carotid artery flow velocity increased with exercise in long-term residents of high altitude and whether resting values and the response to exercise differed in lifelong vs. acclimatized newcomer male residents of high altitude, we studied 15 native Tibetan and 11 Han ("Chinese") 6 +/- 2-yr residents of Lhasa (3,658 m), Tibet Autonomous Region, China. Noninvasive Doppler ultrasound was used to measure internal carotid artery diameter, mean flow velocity, and, in combination, hemoglobin and arterial O2 saturation to assess cerebral O2 delivery. Tibetan and Han groups were similar in body size and resting internal carotid artery diameter, blood pressure, hemoglobin concentration, internal carotid artery mean flow velocity, and calculated cerebral O2 delivery. Submaximal exercise increased internal carotid artery mean flow velocity and cerebral O2 delivery in the Tibetan and Han subjects. At peak exercise, the Tibetans sustained the increase in flow velocity and cerebral O2 delivery, whereas the Hans did not. Across all exercise levels up to and including peak effort, the Tibetans demonstrated a greater increase in internal carotid artery flow velocity and cerebral O2 delivery relative to resting values than did the Hans. The greater cerebral O2 delivery was accompanied by increased peak exercise capacity in the Tibetan compared with the Han group. Our findings suggest that the cerebral blood flow response to exercise is maintained in Tibetan lifelong residents of high altitude.  相似文献   

11.

[Purpose]

Functional near-infrared spectroscopy (fNIRS) provides functional imaging of cortical activations by measuring regional oxy- and deoxy-hemoglobin (Hb) changes in the forehead during a cognitive task. There are, however, potential problems regarding NIRS signal contamination by non-cortical hemodynamic (NCH) variables such as skin blood flow, middle cerebral artery blood flow, and heart rate (HR), which are further complicated during acute exercise. It is thus necessary to determine the appropriate post-exercise timing that allows for valid NIRS assessment during a task without any increase in NCH variables. Here, we monitored post-exercise changes in NCH parameters with different intensities of exercise.

[Methods]

Fourteen healthy young participants cycled 30, 50 and 70% of their peak oxygen uptake (Vo2peak) for 10 min per intensity, each on different days. Changes in skin blood flow velocity (SBFv), middle cerebral artery mean blood velocity (MCA Vmean) and HR were monitored before, during, and after the exercise.

[Results]

Post-exercise levels of both SBFv and HR in contrast to MCA Vmean remained high compared to basal levels and the times taken to return to baseline levels for both parameters were delayed (2-8 min after exercise), depending upon exercise intensity.

[Conclusion]

These results indicate that the delayed clearance of NCH variables of up to 8 min into the post-exercise phase may contaminate NIRS measurements, and could be a limitation of NIRS-based neuroimaging studies.  相似文献   

12.
The Windkessel properties of the vasculature are known to play a significant role in buffering arterial pulsations, but their potential importance in dampening low-frequency fluctuations in cerebral blood flow has not been clearly examined. In this study, we quantitatively assessed the contribution of arterial Windkessel (peripheral compliance and resistance) in the dynamic cerebral blood flow response to relatively large and acute changes in blood pressure. Middle cerebral artery flow velocity (MCA(V); transcranial Doppler) and arterial blood pressure were recorded from 14 healthy subjects. Low-pass-filtered pressure-flow responses (<0.15 Hz) during transient hypertension (intravenous phenylephrine) and hypotension (intravenous sodium nitroprusside) were fitted to a two-element Windkessel model. The Windkessel model was found to provide a superior goodness of fit to the MCA(V) responses during both hypertension and hypotension (R2 = 0.89 ± 0.03 and 0.85 ± 0.05, respectively), with a significant improvement in adjusted coefficients of determination (P < 0.005) compared with the single-resistance model (R2 = 0.62 ± 0.06 and 0.61 ± 0.08, respectively). No differences were found between the two interventions in the Windkessel capacitive and resistive gains, suggesting similar vascular properties during pressure rise and fall episodes. The results highlight that low-frequency cerebral hemodynamic responses to transient hypertension and hypotension may include a significant contribution from the mechanical properties of vasculature and, thus, cannot solely be attributed to the active control of vascular tone by cerebral autoregulation. The arterial Windkessel should be regarded as an important element of dynamic cerebral blood flow modulation during large and acute blood pressure perturbation.  相似文献   

13.
The response of the cerebral circulation to exercise has been studied with transcranial Doppler ultrasound (TCD) because this modality provides continuous measurements of blood velocity and is well suited for the exercise environment. The use of TCD as an index of cerebral blood flow, however, requires the assumption that the diameter of the insonated vessel is constant. Here, we examine this assumption for rhythmic handgrip using a spectral index designed to measure trends in vessel flow. Nineteen normal subjects were studied during 5 min of volitional maximum rhythmic right handgrip at 1 Hz. TCD velocities from both middle arteries (left and right), blood pressure, and end-tidal PCO(2) were recorded every 10 s. A spectral weighted sum was also calculated as a flow index (FI). Averages were computed from the last 2 min of handgrip. Relative changes in velocity, FI, and pressure were calculated. The validity of FI was tested by comparing the change in diameter derived from equations relating flow and diameter. Mean blood pressure increased 23.8 +/- 17.8% (SD), and velocity increased 13.3 +/- 9.8% (left) and 9.6 +/- 8.3% (right). Although the mean change in FI was small [2.0 +/- 18. 2% (left) and 4.7 +/- 29.7% (right)], the variation was high: some subjects showed a significant increase in FI and others a significant decrease. Diameter estimates from two equations relating flow and luminal area were not significantly different. Decreases in FI were associated with estimated diameter decreases of 10%. Our data suggest that the cerebral blood flow (CBF) response to rhythmic handgrip is heterogeneous and that middle cerebral artery flow can decrease in some subjects, in agreement with prior studies using the Kety-Schmidt technique. We speculate that the velocity increase is due to sympathetically mediated vasoconstriction rather than a ubiquitous flow increase. Our data suggest that the use of ordinary TCD velocities to interpret the CBF response during exercise may be invalid.  相似文献   

14.
Carbon dioxide is an important regulator of vascular tone. Glibenclamide, an inhibitor of ATP-sensitive potassium channel (K(ATP)) activation, significantly blunts vasodilation in response to hypercapnic acidosis in animals. We investigated whether glibenclamide also alters the cerebral and ocular vasodilator response to hypercapnia in humans. Ten healthy male subjects were studied in a controlled, randomized, double-blind two-way crossover study under normoxic and hypercapnic conditions. Glibenclamide (5 mg po) or insulin (0.3 mU. kg(-1). min(-1) iv) were administered with glucose to achieve comparable plasma insulin levels. In control experiments, five healthy volunteers received glibenclamide (5 mg) or nicorandil (40 mg) or glibenclamide and nicorandil in a randomized, three-way crossover study. Mean blood flow velocity and resistive index in the middle cerebral artery (MCA) and in the ophthalmic artery (OA) were measured with Doppler sonography. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation. Forearm blood flow was measured with venous occlusion plethysmography. Hypercapnia increased ocular fundus pulsation amplitude by +18.2-22.3% (P < 0. 001) and mean flow velocity in the MCA by +27.4-33.3% (P < 0.001), but not in the OA (2.1-6.5%, P = 0.2). Forearm blood flow increased by 78.2% vs. baseline (P = 0.041) after nicorandil administration. Glibenclamide did not alter hypercapnia-induced changes in cerebral or ocular hemodynamics and did not affect systemic hemodynamics or forearm blood flow but significantly increased glucose utilization and blunted the nicorandil-induced vasodilation in the forearm. This suggests that hypercapnia-induced changes in the vascular beds under study are not mediated by activation of K(ATP) channels in humans.  相似文献   

15.
Transcranial Doppler ultrasonography was used to measure the linear blood velocity (LBV) in the middle cerebral artery (MCA) of the right and left hemispheres in right-handers and left-handers who were breathing a gas mixture with 10% oxygen through a mask at normal barometric pressure. No interhemispheric differences were found in left-handers before hypoxia. The maximum systolic velocity was higher in the MCA of the left hemisphere in right-handers. Left-handers had a higher LBV in the right hemisphere than did right-handers. LBV in the MCA of both hemispheres increased in both left-handers and right-handers as a result of hypoxia. Aggravation of hypoxia caused a decrease in LBV in the left hemisphere in right-handers.  相似文献   

16.
Postnatal hemodynamic changes in very-low-birthweight infants.   总被引:3,自引:0,他引:3  
The purpose of this study was to characterize postnatal changes in regional Doppler blood flow velocity (BFV) and cardiac function of very-low-birthweight infants and to examine factors that might influence these hemodynamic changes. Mean and end-diastolic BFV of the middle cerebral and superior mesenteric arteries, cardiac output, stroke volume, and fractional shortening were measured in 20 infants birthweight 1,002 +/- 173 g, gestational age 28 +/- 2 wk) at 6, 30, and 54 h after birth and before and after feedings on days 7 and 14. Postnatal increases in cerebral BFV, mesenteric BFV, and cardiac output were observed that were not associated with changes in blood pressure, hematocrit, pH, arterial PCO(2), or oxygen saturation. The postnatal pattern of relative vascular resistance (RVR) differed between the cerebral and mesenteric vasculatures. RVR decreased in the middle cerebral but not the superior mesenteric artery. Physiological patency of the ductus arteriosus did not alter postnatal hemodynamic changes. In response to feeding, mesenteric BFV and stroke volume increased, and mesenteric RVR and heart rate decreased. Postprandial responses were not affected by postnatal age or the age at which feeding was initiated. However, the initiation of enteral nutrition before 3 days of life was associated with higher preprandial mesenteric BFV and lower mesenteric RVR than was later initiation of feeding. We conclude that in very-low-birthweight infants over the first week of life 1) systemic, cerebral, and mesenteric hemodynamics exhibit region-specific changes; 2) asymptomatic ductus arteriosus patency and early feedings do not significantly influence these postnatal hemodynamic changes; and 3) cardiac function adapts to increase local mesenteric BFV in response to feedings.  相似文献   

17.
We present a first in vivo application of phase dual‐slopes (DS?), measured with frequency‐domain near‐infrared spectroscopy on four healthy human subjects, to demonstrate their enhanced sensitivity to cerebral hemodynamics. During arterial blood pressure oscillations elicited at a frequency of 0.1 Hz, we compare three different ways to analyze either intensity (I) or phase (?) data collected on the subject's forehead at multiple source‐detector distances: Single‐distance, single‐slope and DS. Theoretical calculations based on diffusion theory show that the method with the deepest maximal sensitivity (at about 11 mm) is DS?. The in vivo results indicate a qualitative difference of phase data (especially DS?) and intensity data (especially single‐distance intensity [SDI]), which we assign to stronger contributions from scalp hemodynamics to SDI and from cortical hemodynamics to DS?. Our findings suggest that scalp hemodynamic oscillations may be dominated by blood volume dynamics, whereas cortical hemodynamics may be dominated by blood flow velocity dynamics.  相似文献   

18.
The effects of physical activity on cerebral blood flow (CBF) and cerebral autoregulation (CA) have not yet been fully evaluated. There is controversy as to whether increasing heart rate (HR), blood pressure (BP), and sympathetic and metabolic activity with altered levels of CO2 might compromise CBF and CA. To evaluate these effects, we studied middle cerebral artery blood flow velocity (CBFV) and CA in 40 healthy young adults at rest and during increasing levels of physical exercise. We continuously monitored HR, BP, end-expiratory CO2, and CBFV with transcranial Doppler sonography at rest and during stepwise ergometric challenge at 50, 100, and 150 W. The modulation of BP and CBFV in the low-frequency (LF) range (0.04-0.14 Hz) was calculated with an autoregression algorithm. CA was evaluated by calculating the phase shift angle and gain between BP and CBFV oscillations in the LF range. The LF BP-CBFV gain was then normalized by conductance. Cerebrovascular resistance (CVR) was calculated as mean BP adjusted to brain level divided by mean CBFV. HR, BP, CO2, and CBFV increased significantly with exercise. Phase shift angle, absolute and normalized LF BP-CBFV gain, and CVR, however, remained stable. Stable phase shift, LF BP-CBFV gain, and CVR demonstrate that progressive physical exercise does not alter CA despite increasing HR, BP, and CO2. CA seems to compensate for the hemodynamic effects and increasing CO2 levels during exercise.  相似文献   

19.

Background

To investigate the effect of preceding acute exercise on the peripheral vascular response to a mental task, we measured splanchnic and cerebral blood flow responses to performing a mental task after exercise and resting.

Methods

In the exercise trial, 11 males exercised for 30 min on a cycle ergometer with a workload set at 70% of the age-predicted maximal heart rate for each individual. After a 15-min recovery period, the subjects rested for 5 min for pre-task baseline measurement and then performed mental arithmetic for 5 min followed by 5 min of post-task measurement. In the resting trial, they rested for 45 min and pre-task baseline data was obtained for 5 min. Then mental arithmetic was performed for 5 min followed by post-task measurement. We measured the mean blood velocity in the middle cerebral artery and superior mesenteric artery and the mean arterial pressure.

Results

Mean arterial pressure and mean blood velocity in the middle cerebral artery were significantly higher than the baseline during mental arithmetic in both exercise and resting trials. Mean blood velocity in the middle cerebral artery during mental arithmetic was greater in the control trial than the exercise trial. Mean blood velocity in the superior mesenteric artery showed no significant change during mental arithmetic from baseline in both trials.

Conclusion

These results suggest that acute exercise can moderate the increase in cerebral blood flow induced by a mental task.  相似文献   

20.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Our aim was to determine the muscle metaboreflex threshold and gain in humans by creating an open-loop relationship between active muscle blood flow and hemodynamic responses during a rhythmic handgrip exercise. Eleven healthy subjects performed the exercise at 5 or 15% of maximal voluntary contraction (MVC) in random order. During the exercise, forearm blood flow (FBF), which was continuously measured using Doppler ultrasound, was reduced in five steps by manipulating the inner pressure of an occlusion cuff on the upper arm. The FBF at each level was maintained for 3 min. The initial reductions in FBF elicited no hemodynamic changes, but once FBF fell below a threshold, mean arterial blood pressure (MAP) and heart rate (HR) increased and total vascular conductance (TVC) decreased in a linear manner. The threshold FBF during the 15% MVC trial was significantly higher than during the 5% MVC trial. The gain was then estimated as the slope of the relationship between the hemodynamic responses and FBFs below the threshold. The gains for the MAP and TVC responses did not differ between workloads, but the gain for the HR response was greater in the 15% MVC trial. Our findings thus indicate that increasing the workload shifts the threshold for the muscle metaboreflex to higher blood flows without changing the gain of the reflex for the MAP and TVC responses, whereas it enhances the gain for the HR response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号