首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several aspects of the role of acetate metabolism in the sporulation ofSaccharomyces carlsbergensis were investigated. Experiments in which the development of the respiratory system was either stimulated by growth on sugars to which the cells have to adapt, or inhibited by chloramphenicol suggested a correlation between respiratory development and sporulation. In cells in which the respiratory system has been repressed during growth, mitochondrial protein synthesis and derepression are prerequisites for sporulation. When derepression is complete, sporulation no longer depends on mitochondrial protein synthesis. Incorporation experiments with acetate showed that this compound is an important source of intermediates for biosynthetic processes that occur during sporulation. Its incorporation into macromolecular fractions is tightly coupled to sporulation.  相似文献   

2.
The role of the mitochondrial system during sporulation of Saccharomyces cerevisiae was studied. Addition of ethidium bromide (EthBr) to cells growing in acetate medium resulted in the quantitative (>98%) conversion of the culture to the petite genotype in one generation. The cells were respiratory active (derepressed) but contained no mitochondrial deoxyribonucleic acid (mtDNA) as demonstrated by analytical ultracentrifugation in CsCl. When transferred to acetate sporulation medium, the culture sporulated. Ascus production was only slightly below that of the control culture. Synthesis of mtDNA occurred during sporulation in the control but not in the EthBr-treated culture. Mitochondrial protein synthesis was virtually eliminated in the EthBr-treated culture. Therefore, completely derepressed cells can sporulate without a functional mitochondrial genetic system. When partially repressed cells were treated with EthBr, no ascus formation was observed after transfer to sporulation medium. Control cultures underwent respiratory adaptation in sporulation medium and then sporulated. Extensive derepression of the respiratory system is thus required for sporulation, and this adaptation is dependent on a functional mitochondrial system. Our results suggest that once the cells are fully derepressed no mitochondrial genetic information has to be expressed during meiosis and ascus formation.  相似文献   

3.
Acetate Utilization and Macromolecular Synthesis During Sporulation of Yeast   总被引:39,自引:15,他引:24  
Acetate utilization and macromolecule synthesis during sporulation (meiosis) of Saccharomyces cerevisiae were studied. When diploid cells are transferred from glucose nutrient medium to acetate sporulation medium at early stationary phase, respiration of the exogenously supplied acetate proceeds without any apparent lag. At the completion of ascospore development, 62% of the acetate carbon consumed has been respired, 22% remains in the soluble pool, and 16% is incorporated into lipids, protein, nucleic acids, and other cell components. Measurements of the rate of protein synthesis during sporulation reveal two periods of maximal synthetic activity: an early phase coincidental with increases in deoxyribonucleic acid, ribonucleic acid, and protein cellular content and a later phase during ascospore formation. Experiments in which protein synthesis was inhibited at intervals during sporulation indicate that protein synthesis is required both for the initiation and completion of ascus development.  相似文献   

4.
When diploid Saccharomyces cerevisiae cells logarithmically growing in acetate medium were placed in sporulation medium, the relative rates of synthesis of 40 or more individual ribosomal proteins (r-proteins) were coordinately depressed to approximately 20% of those of growing cells. These new depressed rates remained constant for at least 10 h into sporulation. If yeast nitrogen base was added 4 yh after the beginning of sporulation to shift the cells back to vegetative growth, the original relative rates of r-protein synthesis were rapidly reestablished. this upshift in the rates occurred even in diploids homozygous for the regulatory mutation rna2 at the restrictive temperature for this mutation (34 degrees C). However, once these mutant cells began to bud and grow at 34 degrees C, the phenotype of rna2 was expressed and the syntheses of r-proteins were again coordinately depressed. At least one protein whose rate of synthesis was not depressed by rna2 in vegetative cells did have a decreased rate of synthesis during sporulation. Another r-protein whose synthesis was depressed by rna2 maintained a high rate of synthesis at the beginning of sporulation. These data suggest that the mechanism responsible for coordinate control of r-protein synthesis during sporulation does not require the gene product of RNA2 and thus defines a separate mechanism by which r-proteins are coordinately controlled in S. cerevisiae.  相似文献   

5.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

6.
Cells of strain Z270 (MAT alpha/MAT alpha) of Saccharomyces cerevisiae did not undergo ascospore formation in buffered or unbuffered acetate sporulation medium in the presence of erythromycin. The drug inhibited sporulation when added within the first 6 to 8 h and affected to different extents some of the metabolic and sporulation-specific events that normally occur during this period. In sporulation medium, protein synthesis was highly sensitive to erythromycin, whereas RNA synthesis was unaffected and premeiotic DNA synthesis was partially inhibited. Intragenic recombination occurred at normal rates for the various heteroallelic loci tested, but rates of intergenic recombination were markedly reduced, and commitment to haploidization did not occur; hence, development was evidently arrested between intragenic and intergenic recombination. Cells kept for 8 h in acetate sporulation medium that were ready for sporulation in water without erythromycin failed to sporulate in water containing the drug, indicating that erythromycin can inhibit sporulation independent of acetate utilization.  相似文献   

7.
The effects of the mitochondrial protein synthesis inhibitor chloramphenicol and the mitochondrial F0 adenosine triphosphatase inhibitor oligomycin on the synthesis of nucleus-encoded cytochrome c protein were studied. Both inhibitors stimulated cytochrome c protein synthesis in the derepressed state (growth in media containing 2% raffinose) but had no effect on the synthesis of the cytochrome c protein in the repressed state (growth in media containing 5% glucose). Oligomycin uncoupled the synthesis of the apoprotein from its processing into the hemoprotein. Neither antibiotic had a significant effect on the rate of glucose repression of cytochrome protein synthesis. The kinetics of cytochrome c derepression and the effects of these two antibiotics on these kinetics were also studied. Cells were derepressed by transfer from glucose- to faffinose-containing media, and the rate of cytochrome c synthesis increased from the repressed to the derepressed level during the second hour of derepression. Chloramphenicol delayed this derepression, but after 5 h the rate of cytochrome c protein synthesis increased to twice the rate of synthesis in uninhibited cells. On the other hand, oligomycin inhibited derepression of cytochrome c. These results are discussed with respect to the effects of mitochondrial function in the derepressed and repressed states and during the processes of repression and derepression of cytochrome c.  相似文献   

8.
The effects of nutritional alterations (carbon source and zinc) on nuclear division and protein synthesis during apomictic and meiotic development in Saccharomyces cerevisiae 19e1 were investigated. Unlike cells cultivated under meiosis-promoting conditions, cells cultured under apomixis-promoting conditions exhibited extensive protein synthesis during the first 3 h of incubation in sporulation medium, and nuclear divisions were evident during this time. Cycloheximide treatment of the latter cells induced meiosis, and maximum yields of meiotic asci resulted when this treatment was given for the first 3 h in sporulation medium. The results indicate that the decision concerning which developmental route cells will follow is made shortly after transfer to sporulation medium. Electrophoretic analysis of labeled proteins synthesized during sporulation revealed bands unique to both developmental routes.  相似文献   

9.
The timing and relative participation of concurrent pathways of carbohydrate metabolism as well as the extent of terminal respiratory activity were determined by radiorespirometry with 14-C substrates and by enzyme assays for vegetative and sporulating cells of the bacterium Bacillus popilliae cultured in whole, intact Popillia japonica (Japanese beetle) larvae. During vegetative proliferation, the pentose phosphate pathway predominates in the bacterial cells with minor involvement of the Embden-Meyerhof-Parnas pathway. As the cells proceed through sporulation, pentose phosphate and Embden-Meyerhof-Parnas activity remains constant. No tricarboxylic cycle activity is evident during growth and sporulation of B. popilliae. The results demonstrate (i) predominantly aerobic metabolism for carbohydrate assimilation within in vivo sporulating cells, (ii) a major contrast to the metabolism of other aerobic sporeforming bacteria that exhibit derepression of tricarboxylic acid cycle enzymatic activity at the onset of sporulation, and (iii) no causal necessity of the cycle to B. popilliae sporogeny.  相似文献   

10.
In anaerobically glucose-grown yeast isocitrate lyase (EC 4.1.3.1.), malate synthase (EC 4.1.3.2.) and malate dehydrogenase (EC 1.1.1.37.) are repressed by glucose. 24 h cultures still contain 0.3–0.4% glucose in the medium, which is enough to completely repress these activities. Aeration of these cells, in buffer containing acetate, initiates the formation of the three enzymes. Within 16 h, the specific activities of these enzymes increase about 140, 120 and 70-fold, respectively. Glucose-6-phosphate dehydrogenase activity was not altered. When the yeast was grown anaerobically, but with a supplement of an unsaturated fatty acid in the medium, synthesis of the three enzymes was much faster and the specific activities after 16 h of derepression were considerably higher. A relationship exists between the number of double bonds in the unsaturated fatty acid molecule and its capability to stimulate enzyme synthesis: linolenic acid is more effective than linoleic acid, which, in turn, is much more effective than oleic acid. Increasing periods of aeration with glucose of anaerobically grown cells prior to derepression results in an increasing stimulation of enzyme synthesis on subsequent derepression. Anaerobic incubation of yeast in the presence of an unsaturated fatty acid in advance to derepression also increased the velocity of enzyme formation. It is suggested that during the aeration period with glucose and during anaerobic incubation with an unsaturated fatty acid a more active protein synthesizing apparatus was formed.  相似文献   

11.
R Weisman  M Choder    Y Koltin 《Journal of bacteriology》1997,179(20):6325-6334
Rapamycin is a microbial macrolide which belongs to a family of immunosuppressive drugs that suppress the immune system by blocking stages of signal transduction in T lymphocytes. In Saccharomyces cerevisiae cells, as in T lymphocytes, rapamycin inhibits growth and cells become arrested at the G1 stage of the cell cycle. Rapamycin is also an effective antifungal agent, affecting the growth of yeast and filamentous fungi. Unexpectedly, we observed that rapamycin has no apparent effect on the vegetative growth of Schizosaccharomyces pombe. Instead, the drug becomes effective only when cells experience starvation. Under such conditions, homothallic wild-type cells will normally mate and undergo sporulation. In the presence of rapamycin, this sexual development process is strongly inhibited and cells adopt an alternative physiological option and enter stationary phase. Rapamycin strongly inhibits sexual development of haploid cells prior to the stage of sexual conjugation. In contrast, the drug has only a slight inhibitory effect on the sporulation of diploid cells. A genetic approach was applied to identify the signal transduction pathway that is inhibited by rapamycin. The results indicate that either rapamycin did not suppress the derepression of sexual development of strains in which adenylate cyclase was deleted or the cyclic AMP-dependent protein kinase encoded by pka1 was mutated. Nor did rapamycin inhibit the unscheduled meiosis observed in pat1-114 mutants. Overexpression of ras1+, an essential gene for sexual development, did not rescue the sterility of rapamycin-treated cells. However, expression of the activated allele, ras1Val17, antagonized the effect of rapamycin and restored the ability of the cells to respond to mating signals in the presence of the drug. We discuss possible mechanisms for the inhibitory effect of rapamycin on sexual development in S. pombe.  相似文献   

12.
 Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position −542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress. Received: 3 June 1996 / Accepted: 20 August 1996  相似文献   

13.
We have quantified yeast carbon and oxygen consumption fluxes and estimated anabolic fluxes through glyoxylate and gluconeogenic pathways under various conditions of sporulation on acetate. The percentage of sporulation reached a maximum of 55% to 60% after 48 h in sporulation medium, for cells harvested from logarithmic growth in acetate minimal medium. When cells were harvested in the stationary phase of growth before transfer to sporulation medium, the maximum percentage of sporulation decreased to 40% along with the occurrence of meiosis as could be judged by counting of bi- and tetra-nucleated cells. In both experiments, the rates of acetate and oxygen consumption decreased as a function of time when exposed to sporulation medium. Apparently, the decrease of metabolic rates was not due to alkalinization. By systematically varying the cell concentration in sporulation medium from 1.4×107 to 20×107 cell ml-1, the percentage of sporulating cells was found to decrease in parallel with the rate of acetate consumption. When the sporulation efficiency attained under the different experimental conditions was plotted as a function of the rate of acetate consumption, a linear correlation was found. Anabolic fluxes estimation revealed a decrease of the rate through gluconeogenic and glyoxylate pathways occurring during sporulation progression. The pattern of metabolic fluxes progressively evolved toward a predominance of more oxidative catabolic fluxes than those exhibited under growth conditions. The results obtained are discussed in terms of a characteristic pattern of metabolic fluxes and energetics, associated to the development of yeast sporulation.Abbreviations DAPI 4,6-diamidino-2-phenylindole - dw dry weight - OD540 optical density at 540 nm - SEM standard error of the mean - RQ respiratory quotient  相似文献   

14.
During spore development of Bacillus subtilis both protein synthesis and sporulation become resistant to the antibiotic fusidic acid. This resistance develops at the time when asymmetric prespore septa are formed. Simultaneously ribosomes lose their ability to bind fusidic acid, as demonstrated by their affinity chromatography with the immobilized drug. Mutants resistant to fusidic acid during growth are oligosporogenous; their sporulation development is blocked before septum formation. These results indicate that normal ribosomes are needed for prespore septation sporulation; only after septation can protein synthesis be maintained, throughout the development period, by fusidate resistant ribosomes.  相似文献   

15.
We investigated the sporulation properties of a series of diploid Saccharomyces cerevisiae strains homozygous for inositol auxotrophic markers. The strains required different amounts of inositol for the completion of sporulation. Shift experiments revealed two phases of inositol requirement during sporulation which coincided with the two phases of lipid synthesis found by earlier workers. Phase I was at the beginning and during premeiotic deoxyribonucleic acid synthesis; phase II immediately preceded the appearance of mature asci. Of the inositol taken up by sporulating cells, 90% was incorporated into inositol phospholipids. By two-dimensional thin-layer chromatography, eight compounds were resolved, one of which was sporulation specific. The majority of the inositol phospholipids were, however, identical to those found in vegetatively growing cells. In the absence of inositol, the cells did not sporulate but, after a certain time, were unable to return to vegetative growth. These nonsporulating cells did, however, incorporate acetate into lipids and double their deoxyribonucleic acid content in the premeiotic phase. We believe that it is this lack of coordination of biosynthetic events which causes inositol-less death on sporulation media without inositol.  相似文献   

16.
Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position ?542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress.  相似文献   

17.
Cells of Bacillus subtilis sporulate when they are transferred, at any time of growth in nutrient sporulation medium, to a potassium-phosphate buffer containing slowly utilizable carbon sources such as l-aspartate, citrate, l-glutamate, or lactate. Transfer to buffer containing more rapidly utilizable carbon sources such as malate or glucose leads to sporulation only when the cells either had reached the end of growth or when the transfer medium also contains glycine. Acetate, which as a sole carbon source does not allow growth, also does not alone permit sporulation; however, the presence of both acetate (0.05 m) and glycine or l-serine (0.01 m) in the buffer medium allows sporulation if the cells are transferred to this medium after they have grown in the nutrient sporulation medium beyond the end of the exponential growth phase (T(0)). The development, required before transfer, does not seem to involve the end of a round of deoxyribonucleic acid duplication, as experiments with tryptophan-starved cells have indicated. Glycine or serine cannot be replaced by any of the known metabolites, which are partially derived from them. Amino acid analysis of nutrient sporulation medium showed that glycine (but not serine) is present at a concentration of 0.3 mm at the beginning of the developmental period, thus allowing, in combination with an acetyl-coenzyme A (CoA) precursor, sporulation but not growth. Acetyl-CoA is required not only for adenosine-triphosphate synthesis but also for some other reactions.  相似文献   

18.
19.
20.
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号