首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
The mammalian osteopetroses represent a pathogenetically diverse group of skeletal disorders characterized by excess bone mass resulting from reduced osteoclastic bone resorption. Abnormalities involving osteoblast function and skeletal development have also been reported in many forms of the disease. In this study, we used the rat mutation, osteopetrosis (op), to examine differences in skeletal gene expression between op mutants and their normal littermates. RNA isolated from calvaria and long bones was used as a template for mRNA-differential display. Sequence information for one of the many cDNA that were selectively expressed in either normal or mutant bone suggested that it is the rat homologue of connective tissue growth factor (CTGF) previously cloned in the human, mouse, and other species. A consensus sequence was assembled from overlapping 5'-RACE clones and used to confirm the rat CTGF cDNA protein coding region. Northern blot analysis confirmed that this message was highly (8- to 10-fold) over-expressed in op versus normal bone; it was also upregulated in op kidney but none of the other tissues (brain, liver, spleen, thymus) examined. In primary rat osteoblast cultures, the CTGF message exhibits a temporal pattern of expression dependent on their state of differentiation. Furthermore, CTGF expression is regulated by prostaglandin E(2), a factor known to modulate osteoblast differentiation. Since members of the CTGF family regulate the expression of specific genes, such as collagen and fibronectin, we propose that CTGF may play a previously unreported role in normal skeletal modeling/remodeling. Its dramatic over-expression in the op mutant skeleton may be secondary to the uncoupling of bone resorption and bone formation resulting in dysregulation of osteoblast gene expression and function.  相似文献   

2.
The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.  相似文献   

3.
Osteoclastic activity induces osteomodulin expression in osteoblasts   总被引:2,自引:0,他引:2  
Bone resorption by osteoclasts stimulates bone formation by osteoblasts. To isolate osteoblastic factors coupled with osteoclast activity, we performed microarray and cluster analysis of 8 tissues including bone, and found that among 10,490 genes, osteomodulin (OMD), an extracellular matrix keratan sulfate proteoglycan, was simultaneously induced with osteoclast-specific markers such as MMP9 and Acp5. OMD expression was detected in osteoblasts and upregulated during osteoblast maturation. OMD expression in osteoblasts was also detected immunohistochemically using a specific antibody against OMD. The immunoreactivity against OMD decreased in op/op mice, which lack functional macrophage colony stimulating factor (M-CSF) and are therefore defective in osteoclast formation, when compared to wild-type littermates. OMD expression in op/op mice was upregulated by M-CSF treatment. Since the M-CSF receptor c-Fms was not expressed in osteoblasts, it is likely that OMD is an osteoblast maturation marker that is induced by osteoclast activity.  相似文献   

4.
Osteopetrosis is an inherited metabolic disease characterized by an excessive accumulation of bone. This is associated with an osteoclast deficiency. Osteopetrosis is always accompanied by the failure and/or delay of tooth eruption. The present study was conducted to examine in detail the morphological and histological changes of growth of the third molars in the osteopetrosis (op/op) mouse. At the age of 10 days, normal and op/op mice showed no detectable difference in the shape of the third molar follicles. However, the third molars in the op/op mouse became obscured by the proliferation of neighboring bone trabeculae. Moreover, no tartrate-resistant acid phosphatase-positive cells were detected on the bone surfaces of 10-day-old op/op mice. Ankylosis between the root dentin and proliferating bone trabeculae was a common feature in the 20- and 30-day-old op/op mice. The third molars erupted into the oral cavity before the age of 30 days in normal mice, and the crowns, roots, and periodontal ligaments appeared well developed. Throughout the experiment, it seemed that the primary cause of the microdontia and ankylosis of the developing root in the mutant mouse was a deficiency of osteoclasts, with attendant lack of bone remodeling.  相似文献   

5.
Osteoblast development is a complex process involving the expression of specific growth factors and regulatory proteins that control cell proliferation, differentiation, and maturation. In this study, we used the rat mutation, osteopetrosis (op), to examine differences in skeletal gene expression between mutant op and normal littermates. Total RNA isolated from long bone and calvaria was used as a template for mRNA differential display. One of many cDNAs that were selectively expressed in either normal or mutant bone was cloned and sequenced and found to share some homology to the human nmb and Pmel 17 genes. This novel cDNA was named osteoactivin. Osteoactivin has an open reading frame of 1716 bp that encodes a protein of 572 amino acids with a predicted molecular weight of 63.8 kD. Protein sequence analysis revealed the presence of a signal peptide and a cleavage site at position 23. The protein also has thirteen predicted N-linked glycosylation sites and a potential RGD integrin recognition site at position 556. Northern blot analysis confirmed that osteoactivin was 3- to 4-fold overexpressed in op versus normal bone. RT-PCR analysis showed that osteoactivin is most highly expressed in bone compared with any of the other non-osseous tissues examined. In situ hybridization analysis of osteoactivin in normal bone revealed that it is primarily expressed in osteoblasts actively engaged in bone matrix production and mineralization. In primary rat osteoblast cultures, osteoactivin showed a temporal pattern of expression being expressed at highest levels during the later stages of matrix maturation and mineralization and correlated with the expression of alkaline phosphatase and osteocalcin. Our findings show that osteoactivin expression in bone is osteoblast-specific and suggest that it may play an important role in osteoblast differentiation and matrix mineralization. Furthermore, osteoactivin overexpression in op mutant bone may be secondary to the uncoupling of bone resorption and formation resulting in abnormalities in osteoblast gene expression and function.  相似文献   

6.
Osteopetrosis is a metabolic bone disease with increased skeletal density radiographically and increased risk of fracture. Experimental studies with rat osteopetrotic mutations have shown increased bone density and decreased bone strength. However, it is not known if this reduction in bone strength is only due to changes in structure and geometry or if the tissue properties of bone material itself are changed as well. We have evaluated bone tissue properties with nanoindentation in three osteopetrotic mutations in the rat (incisors-absent ia/ia, osteopetrosis op/op and toothless tl/tl) to test the hypothesis that reduced bone resorption in these mutations results in reduced tissue properties of bone material. No significant differences in elastic modulus or hardness were found between osteopetrotic mutants and their normal littermates (NLMs) in any of the three stocks. This indicates that the tissue properties of bone material are not changed significantly in osteopetrosis, even if the mechanical strength is decreased at the macroscopic level.  相似文献   

7.
Iizuka T  Kohgo T  Marks SC 《Tissue & cell》2002,34(2):103-108
The osteopetrosis (op) mutation in mice is characterized by generalized skeletal sclerosis; reduced numbers of osteoclasts, macrophages, and monocytes; and failure to be cured by bone marrow transplantation. This mutation has been shown to result from an absence of colony-stimulating factor-1 (CSF-1) and reported to be cured by treatment with CSF-1. Macrophage polykaryons are known to be formed by fusion of mononuclear precursors and the presence of subcutaneous implants can elicit the formation of macrophage polykaryons. In order to determine if recruitment of foreign body giant cells is also impaired in osteopetrotic mice, tissue reactions to subcutaneously implanted polyvinyl sponges were studied and compared with normal mice. Our result showed that, in the op mouse, recruitment of macrophages and foreign body giant cells in response to the implants was quantitatively not different from that of normal mice. However, these cells were smaller and did not migrate as deeply into the implant as those seen in normal littermates. In contrast, resident macrophages obtained by peritoneal lavage were significantly reduced in op mice. These data indicate that there is a deficiency in the ability of op mice to mount a foreign body giant cell response to an implanted sponge characterized by a deficiency in the recruitment of precursor cells that are capable of either full development and spreading or migration into the implanted sponge. These data add to the emerging appreciation of the regional differences among macrophage populations in their dependence on CSF-1 for differentiation and survival.  相似文献   

8.
Since the osteopetrotic (op/op) mouse was demonstrated to have a mutation within the coding region of the CSF-1 gene itself, it serves as a model for investigating the differentiation mechanism of macrophage populations in the absence of functional CSF-1. The op/op mice were severely monocytopenic and showed marked reduction and abnormal differentiation of tissue macrophages. Osteoclasts as well as marginal metallophilic macrophages and marginal zone macrophages in the spleen were absent. Most of the tissue macrophages were reduced in number and ultrastructurally immature. However, the degree of reduction in numbers of macrophages in the mutant mice was variable among tissues, suggesting that the heterogeneity of macrophages was generated by their different dependency on CSF-1. After daily CSF-1 injection, the numbers of monocytes, tissue macrophages, and osteoclasts were remarkably increased, and the macrophages showed morphological maturation. However, the numbers of macrophages in the ovary, uterus, and synovial membrane were not increased. In the bone marrow, macrophage precursors detected by monoclonal antibody ER-MP58 proliferated and differentiated into preosteoclasts and osteoclasts. In the spleen, marginal metallophilic macrophages and marginal zone macrophages developed slowly. In this manner, CSF-1 plays an important role in the development, proliferation, and differentiation of certain tissue macrophage populations and osteoclasts. In the op/op mice, Kupffer cells proliferated, transformed into epithelioid cells and multinucleated giant cells, and participated in glucan-induced granuloma formation. In CSF-1-treated op/op mice, the process of granuloma formation was similar to that in normal littermates due to increased monocytopoiesis and monocyte influx into the granulomas. These results indicate that CSF-1 is a potent inducer of the development and differentiation of CSF-1-dependent monocyte/macrophages, and that CSF-1-independent macrophages also play an important role in granuloma formation. Mol Reprod Dev 46:85–91, 1997. © 1997 Wiley Liss, Inc.  相似文献   

9.
The P2X7 nucleotide receptor is an ATP-gated ion channel expressed widely in cells of hematopoietic origin. Our purpose was to explore the involvement of the P2X7 receptor in bone development and remodeling by characterizing the phenotype of mice genetically modified to disrupt the P2X7 receptor [knockout (KO)]. Femoral length did not differ between KO and wild-type (WT) littermates at 2 or 9 months of age, indicating that the P2X7 receptor does not regulate longitudinal bone growth. However, KO mice displayed significant reduction in total and cortical bone content and periosteal circumference in femurs, and reduced periosteal bone formation and increased trabecular bone resorption in tibias. Patch clamp recording confirmed expression of functional P2X7 receptors in osteoclasts from WT but not KO mice. Osteoclasts were present in vivo and formed in cultures of bone marrow from KO mice, indicating that this receptor is not essential for fusion of osteoclast precursors. Functional P2X7 receptors were also found in osteoblasts from WT but not KO mice, suggesting a direct role in bone formation. P2X7 receptor KO mice demonstrate a unique skeletal phenotype that involves deficient periosteal bone formation together with excessive trabecular bone resorption. Thus, the P2X7 receptor represents a novel therapeutic target for the management of skeletal disorders such as osteoporosis.  相似文献   

10.
Osteopetrosis, a metabolic bone disease characterized by a generalized sclerosis of the skeleton, is inherited as an autosomal recessive in a number of mammalian species. The pathogenesis of congenital osteopetrosis is mediated by a reduction in bone resorption as a result of decreased osteoclast function. This hypothesis is based on both functional and structural evidence of reduced bone resorption in all mutations examined to date. The present study examined the histology of cartilage and bone, the ultrastructure of osteoclasts, and the morphology of mineralized bone surfaces in a lethal osteopetrotic mutation, the osteosclerotic (oc) mouse. Histologically, epiphyseal cartilage growth plates, especially the hypertrophic zone, are markedly thickened in oc mice and metaphyses contain excessive osteoid, features characteristic of rickets. Transmission electron microscopy revealed that less than one-quarter of osteoclasts in oc mice demonstrated evidence of ruffled border formation compared with three-quarters of the osteoclasts in normal littermates. In mutants, ruffled borders were less elaborate and cytoplasmic processes penetrated into bone surfaces, suggesting that bone may be removed by mechanical rather than by enzymatic means. There was little morphological evidence of cartilage degradation and broad laminae limitantes persisted in mutants. Mineralized surfaces that undergo resorption in normal mice showed no evidence of bone resorption by scanning EM in mutants. The presence of a rachitic condition, the observations of reduced bone resorption, and the possible contribution of undermineralized matrices to decreased bone resorption are characteristics of the osteosclerotic mutation which suggest that it is a unique osteopetrotic mutant in which to study both the development and regulation of skeletal metabolism.  相似文献   

11.
Bone morphogenetic protein 11 (BMP11) is a key regulatory protein in skeletal development. BMP11 propeptide has been shown to antagonize GDF11 activity in vitro. To explore the role of BMP11 propeptide in skeletal formation in vivo, we generated transgenic mice with skeleton-specific overexpression of BMP11 propeptide cDNA. The mice showed a transformation of the seventh cervical vertebra into a thoracic vertebra in our previous report. Presently, further characterizations of the transgenic mice indicated that ossification in calvatia was dramatically enhanced in transgenic fetuses at 16.5 dpc in comparison with their wild-type littermates. At 10 weeks of age, bone mineral content and bone mineral density were significantly (P<0.05) higher in transgenic mice than that in their wild-type littermates based on dual energy X-ray absorptiometry analysis. The relative trabecular bone volume measured by histological analysis was dramatically increased in transgenic mice compared with their wild-type littermates. The enhanced bone formations in the transgenic mice appear to result from increase osteoblast activities as the expressions of four osteoblast markers - α1 type 1 collagen, osteocalcin, alkaline phosphatase and phex were significantly higher in transgenic fetuses than that in their wild-type littermates. These results suggest that over-expression of BMP11 propeptide stimulates bone formation by increasing osteoblast cell functions.  相似文献   

12.
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.  相似文献   

13.
Liu J  Lv F  Sun W  Tao C  Ding G  Karaplis A  Brown E  Goltzman D  Miao D 《PLoS genetics》2011,7(9):e1002294
Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.  相似文献   

14.
It is well known that cranial flat bone experiences growth and development at the sutural interface, which is regarded as a neutral zone to control mechanical stimuli. In osteopetrotic (op/op) mice, meanwhile, cranial deformation is produced by the deficiency of osteoclasts and the subsequent defect of bone resorption. It would be a reasonable assumption that such disturbance in bone remodeling affects sutural modification and the relevant cranial flat bone development. The present study was thus conducted to examine histological features of the sagittal sutures in op/op mice, with special reference to the relevant bone remodeling. The sagittal sutures in 10-, 15-, 30-, and 60-day-old normal and op/op mice were observed microscopically. Furthermore, osteoclastic activity was evaluated on the sections stained with tartrate-resistant acid phosphatase (TRAP). The sutures of 15-day-old op/op mice showed stenosis and synostosis, and less-developed collagen fibers associated with an irregular arrangement of fibroblasts, whereas these changes were rarely found in normal mice. Osteoclasts were hardly detected in the parietal bones around the sutures of op/op mice, although the number was numerous in normal mice. These results emphasize that congenital deficiency in osteoclast produces unbalanced bone remodeling at the sutural interface and on the surfaces of the cranial bones, which is assumed to be closely related to cranial bone deformity in op/op mice.  相似文献   

15.
It is well known that the defect in bone resorption in osteopetrotic (op/op) mice brings about deformation of the cranium and failure of tooth eruption. However, the influences on longitudinal growth of the craniofacial skeleton have not been elucidated. This study was thus conducted to examine craniofacial morphology and longitudinal changes in the op/op mice by means of morphometric analysis with lateral cephalograms. Lateral cephalograms, taken every 10 days from 10- to 90-day-old mice, were analyzed on a personal computer for 11 measurement items. For the nasal bone region, the most prominent differences were found between the op/op and normal mice. The anterior cranial base and occipital bone height presented almost equivalent growth changes in both the op/op and normal mice. The size of mandible, meanwhile, was significantly smaller in the op/op mice than in the normal controls. The gonial angle was also significantly larger in the op/op mice than in the normal mice throughout the experimental period. Thus, substantial differences in craniofacial growth were demonstrated in various areas of the craniofacial complex, which are assumed essentially due to the lack of osteoclastic bone resorption during growing period. Since the difference became more prominent in the anatomic regions relevant to the masticatory functions, it would be a reasonable assumption that reduced masticatory function is also a key determinant for the less-developed craniofacial skeleton in the op/op mouse.  相似文献   

16.
There is an intimate relationship between muscle and bone throughout life. However, how alterations in muscle functions in disease impact bone homeostasis is poorly understood. Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by progressive muscle atrophy. In this study we analyzed the effects of ALS on bone using the well established G93A transgenic mouse model, which harbors an ALS-causing mutation in the gene encoding superoxide dismutase 1. We found that 4-month-old G93A mice with severe muscle atrophy had dramatically reduced trabecular and cortical bone mass compared with their sex-matched wild type (WT) control littermates. Mechanically, we found that multiple osteoblast properties, such as the formation of osteoprogenitors, activation of Akt and Erk1/2 pathways, and osteoblast differentiation capacity, were severely impaired in primary cultures and bones from G93A relative to WT mice; this could contribute to reduced bone formation in the mutant mice. Conversely, osteoclast formation and bone resorption were strikingly enhanced in primary bone marrow cultures and bones of G93A mice compared with WT mice. Furthermore, sclerostin and RANKL expression in osteocytes embedded in the bone matrix were greatly up-regulated, and β-catenin was down-regulated in osteoblasts from G93A mice when compared with those of WT mice. Interestingly, calvarial bone that does not load and long bones from 2-month-old G93A mice without muscle atrophy displayed no detectable changes in parameters for osteoblast and osteoclast functions. Thus, for the first time to our knowledge, we have demonstrated that ALS causes abnormal bone remodeling and defined the underlying molecular and cellular mechanisms.  相似文献   

17.
The midpalatal suture was observed histologically in both toothless osteopetrotic (op/op) and normal (control) mice. The normal mice had a mature sutural structure, which consists of a well-developed cartilage cell zone and palatal bone. In contrast, the thickness of the cartilage cell zone was substantially greater in the op/op mice than that in the controls. Moreover, the cartilage cells in the op/op mice were frequently found in the palatal bone as well as in the sutural space, exhibiting an imperfect fusion. It seems that immature fusion at the sutural interface in the op/op mice is related to a decrease in biting or masticatory force accompanied by the failure of tooth eruption in addition to an essential defect in osteoclast differentiation, which is a congenital symptom in op/op mice.  相似文献   

18.
19.
Sex and genetic factors determine skeletal mass, and we tested whether bone histomorphometric parameters were sexually dimorphic in femurs from 1 to 6 month old C57BL/6 mice. Trabecular bone volume declined more rapidly in female mice than in male littermates because of enhanced bone resorption. Although bone formation was not different between sexes, female mice exhibited a higher number of osteoblasts than male littermates, suggesting that osteoblasts from female mice may have a reduced ability to form bone. To determine the impact of sex on osteoblastogenesis, we investigated the potential for osteoblastic differentiation of bone marrow stromal cells from C57BL/6, Friend leukemia virus-B (FVB), C3H/HeJ and BALB/c mice of both sexes. Bone marrow stromal cells from female FVB, C57BL/6 and C3H/HeJ mice exhibited lower Alpl and Osteocalcin expression and alkaline phosphatase activity, and formed fewer mineralized nodules than cells from male littermates. Proliferative capacity was greater in cells from male than female C57BL/6, but not FVB, mice. Sorting of bone marrow stromal cells from mice expressing an α-Smooth muscle actin-green fluorescent protein transgene, revealed a higher yield of mesenchymal stem cells in cultures from male mice than in those from female littermates. Sex had a modest impact on osteoblastic differentiation of mesenchymal stem cells. To determine the influence of sex and genetic factors on osteoblast function, calvarial osteoblasts were harvested from C57BL/6, FVB, C3H/HeJ and BALB/c mice. Alpl expression and activity were lower in osteoblasts from C57BL/6 and C3H/HeJ, but not FVB or BALB/c, female mice than in cells from littermates. Sex had no effect on osteoclastogenesis of bone marrow cultures of C57BL/6 mice, but osteoblasts from female mice exhibited higher Rankl and lower Opg expression than cells from male littermates. In conclusion, osteoblastogenesis is sexually dimorphic and influenced by genetic factors.  相似文献   

20.
Osteoclast biology in the osteopetrotic (op) rat   总被引:1,自引:0,他引:1  
Osteopetrosis is a metabolic bone disease characterized by reduced bone resorption. From experimental studies of various osteopetrotic mutations has emerged the hypothesis that each is unique with respect to mechanisms whereby osteoclast development and/or function are reduced. The osteopetrotic (op) mutation in the rat was discovered in Fatty/ORL stock over a decade ago. The paucity of data about osteoclast biology in this mutation prompted this study of cytological, cytochemical, and ultrastructural features of osteoclasts. In op rats, osteoclasts are significantly reduced in number, but are larger and more vacuolated than in normal littermates. Mutant osteoclasts can form ruffled borders and clear zones, but their ability to fragment and excavate bone surfaces is greatly impaired. Cytoplasmic vacuoles in op osteoclasts are randomly distributed and greatly enlarged, and they stain weakly for two cytochemical characteristics of osteoclasts, tartrate-resistant acid phosphatase and acid ATPase. These findings suggest that an abnormality in the lysosomal/vacuolar system, an important component of the resorptive mechanism, may be involved in the interception of osteoclast function in this mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号