首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
糖原合酶激酶-3 (glycogen synthase kinase-3,GSK-3) 是一种多功能的丝氨酸/苏氨酸蛋白激酶,在蛋白质合成、信号传递、细胞增殖、细胞分化、神经功能、肿瘤形成及胚胎发育等众多细胞进程中均扮演重要的角色.GSK-3 能够使多种底物发生磷酸化,并参与胰岛素、Wnt及Hedgehog 等多个信号通路的调控. GSK-3抑制剂在信号通路中能有效地抑制病理情况下GSK-3活性的异常增高,达到治疗的目的.GSK-3的抑制剂将作为一种潜在的药物对治疗糖尿病、阿尔海默茨症、肿瘤等疾病发挥效用.  相似文献   

2.
核转录因子-κB(NF-κB)是维持急性淋巴细胞白血病(ALL)细胞生存的关键因子.近年来发现,糖原合成酶激酶-3β(GSK-3β)可以正性调控NF-κB的活性.本研究通过抑制GSK-3β活性初步探讨ALL细胞中GSK-3β在NF-κB诱导细胞凋亡中的作用机制.收集ALL患儿骨髓单个核细胞,采用免疫荧光细胞化学方法检测到ALL细胞核内GSK-3β有明显聚集.体外培养ALL细胞后经GSK-3β抑制剂氯化锂(LiCl)和SB216763处理,采用Western印迹和EMSA检测发现,ALL细胞核内GSK-3β表达下降,而NF-κBP65蛋白无明显变化,但是其活性明显降低.同时RT-PCR结果显示,NF-κB下游抗凋亡基因存活素(survivin)的表达随之下降,AnnexinV-PE/7-AAD双染流式细胞仪检测结果证实,ALL细胞凋亡明显增加(P0.01).该结果表明,抑制GSK-3β活性可以下调NF-κB的转录活性,并通过下调抗凋亡基因存活素的表达而促进ALL细胞的凋亡.  相似文献   

3.
糖原合成酶激酶3(GSK-3)是一种丝/苏氨酸蛋白激酶,通过Wnt/β-catenin等多条信号通路来调节机体的代谢、生长发育和凋亡等过程,是机体生存必不可少的物质。大量研究表明,GSK-3调节异常可以激活特定细胞、通路和环路,从而诱发精神障碍,如双向情感障碍、抑郁症、孤独症和精神分裂症等。抑制GSK-3活性是精神疾病治疗方法的一个重要组分。本文对近年来国内外有关GSK-3在精神疾病中的作用机制予以综述,以期为临床治疗提供依据。  相似文献   

4.
糖原合成酶激酶-3(GSK-3)是一种存在于所有真核细胞质中的丝氨酸/苏氨酸蛋白激酶,分为α和β两种亚型。研究显示GSK-3β在调控糖代谢,细胞炎症反应,神经及心脏功能和生殖功能中具有重要作用。其致病机制主要是通过磷酸化不同信号通路关键酶从而参与细胞新陈代谢,增殖,衰老,凋亡等生理活动的调控过程。本文主要对GSK-3β可能导致的多种疾病及其发病机制进行综述。  相似文献   

5.
糖原合酶激酶3(glycogen synthase kinase 3,GSK-3)是一种丝/苏氨酸蛋白激酶,是细胞内多种信号转导通路中的重要成分。GSK-3活性受多种机制调节,其磷酸化是研究最多的调节方式。GSK-3广泛表达于神经系统,参与神经极性和突触再生、突触可塑性形成、神经炎症和神经稳态的调控。  相似文献   

6.
蛋白质修饰对Wnt信号通路的调控   总被引:1,自引:0,他引:1  
Wnt信号通路与细胞的生长发育和分化等密切相关,是细胞中重要的信号转导途径,在 多种癌症中,都有该通路的异常改变.Wnt信号通路主要是通过一系列蛋白将Wnt信号传导至β连环蛋白(β-catenin,β-cat),使后者入核并与转录因子T细胞因子/淋巴细胞增 强因子(T cell factor / lymphoid enhancer factor,TCF/LEF)结合,从而促进下游基因的转录,进而调控细胞的多种生理过程.在该通路中,涉及轴蛋白(Axin)、结肠腺瘤样息 肉病蛋白(adenomatous polyposis coli,APC)、糖原合酶激酶3β (glycogen synthase kinase-3β, GSK-3β)、β连环蛋白和酪蛋白激酶I (casein kinase I,CKI)等众多调节因子,这些因子能发生多种化学修饰,如磷酸化、泛素化(ubiquitylation)、苏素化 (small ubiquitin related moditier,SUMO)和乙酰化等,从而影响β连环蛋白、T细胞因子的稳定性、细胞定位以及活性,最终起到调节Wnt信号通路的作用.  相似文献   

7.
糖原合酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)是一种多功能丝氨酸/苏氨酸激酶,通过磷酸化酪氨酸、丝氨酸和苏氨酸位点介导Wnt、Hedgehog、NF-κB和PI3K/Akt等信号通路,参与各类细胞功能的调节。GSK-3β在不同信号通路和细胞类型中扮演不同的角色,导致其在不同的恶性肿瘤中发挥促癌或抑癌的双重作用,与癌细胞的迁移和侵袭有直接关系。在胰腺癌和结肠癌研究中,GSK-3β的高表达调控通过相关信号通路,增强细胞增殖调控因子表达,抑制负性调控因子的活性,促进癌细胞的增殖。GSK-3β能激活上皮细胞间质转型过程中相关因子的表达,增强癌细胞扩散能力;相反,在胃癌和肺癌中,GSK-3β具有积极的抑癌作用。GSK-3β通过阻滞细胞周期和诱导细胞凋亡发挥抑癌作用,通过调节Wnt和PI3K/Akt信号通路,负向调控癌细胞的生长与侵袭,并且GSK-3β磷酸化相关因子以减弱其对癌细胞转移能力的刺激。本文总结了GSK-3β在不同恶性肿瘤中的作用及机制,并针对研究中存在的问题进行分析与展望,为相关领域的研究提供一定的理论基础。  相似文献   

8.
糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK-3β)是糖原合成酶激酶3的一种亚型。GSK-3β不仅参与淀粉样蛋白质前体(amyloid precursor protein,APP)代谢,还在tau蛋白过度磷酸化过程中发挥作用,GSK-3β表达及活性的异常会导致神经元细胞的凋亡。APP异常代谢和tau蛋白异常磷酸化是阿尔茨海默病(Alzheimer’s disease,AD)发展的重要因素,因此GSK-3β可能与AD的病理变化密切相关,明确其在AD中的作用及其机制对AD的治疗有重要的意义。  相似文献   

9.
糖尿病大鼠脑GSK-3与PP-2A失调诱导tau蛋白过度磷酸化   总被引:1,自引:1,他引:0  
探讨胰岛素缺乏的糖尿病大鼠皮层糖原合酶激酶-3(GSK-3)及蛋白磷酯酶-2A(PP-2A)变化及其对tau蛋白磷酸化的作用.用链脲佐菌素(streptozotocin,STZ)建立胰岛素缺乏的糖尿病大鼠模型,用放射性配体结合实验检测了GSK-3和PP-2A的活性,蛋白质印迹检测了tau蛋白的磷酸化水平及PP-2A的表达.结果提示:在糖尿病大鼠皮层,GSK-3活性升高,PP-2A活性及表达降低,tau蛋白在Ser198/Ser199/Ser202和Ser396/Ser404位点磷酸化.应用GSK-3的选择性抑制剂Li2CO3后,GSK-3活性降低,PP-2A活性及表达恢复,tau蛋白在Ser198/Ser199/Ser202和Ser396/Ser404位点磷酸化水平降低.研究提示:糖尿病大鼠皮层GSK-3升高可能抑制PP-2A的活性,升高的GSK-3和降低的PP-2A协同促进tau蛋白的磷酸化.  相似文献   

10.
使用分子对接和分子动力学方法,研究了一类中草药活性成分抑制糖原合成酶激酶-3β(GSK-3β)的机理。结果表明:筛选出的芦丁、杨酶酮、二氢丹参酮I和人参皂苷Rb1能够与GSK-3β良好地结合,其中芦丁、杨酶酮和二氢丹参酮I主要结合于GSK-3β的ATP结合口袋区域,人参皂苷Rb1主要结合于GSK-3β的T-loop区域,配体和蛋白之间形成的氢键的数目和存活率是影响结合能力的主要因素,氢键的形成主要取决于配体中的含氧和含氮基团。基于这些有效成分进行结构设计可能获得GSK-3β的高效抑制剂。  相似文献   

11.
Glycogen synthase kinase-3 (GSK-3) is a potential drug target for a number of human diseases. Some indigoids have been found to be potent inhibitors of GSK-3, and individual compounds with better activity, specificity, and solubility are desired. In this work, a new disubstituted indigoid generation system was developed with a tryptophanase-deficient Escherichia coli strain as a host to express the human cytochrome P450 2A6 mutant L240C/N297Q, which catalyzes the oxidation of indole to isatin and indoxyl, which in turn react to generate indigoids. Forty-five substituted 1H-indoles from commercial sources were used as substrates in the system, and indigoid mixtures were tested as potential inhibitors of GSK-3. After preliminary screening, cell extracts with high inhibitory activity towards GSK-3alpha/beta were fractionated, and the IC50 values of twelve individual indigoids were measured for GSK-3alpha/beta as well as the protein kinases CDK1/cyclinB and CDK5/p25. Several indigoids, including an indigo, showed stronger inhibition than found in previous work. The most potent towards GSK-3alpha/beta, dimethyl indirubin 5,5'-dicarboxylate (IC50 of 51 nM), was modified by chemical reactions. One product, indirubin 5,5'-dicarboxylic acid 5-methyl ester, inhibited GSK-3alpha/beta with an IC50 of 14 nM and selectivity nearly 40-fold over CDK1 and CDK5. Indirubin-5-5'-dicarbonitrile was also modified to the corresponding 3'-oxime, which had low specificity but showed very high inhibition of all three kinases with IC50 values of 5, 13, and 10 nM towards GSK-3alpha/beta, CDK1, and CDK5, respectively. Thus, this system has the potential to generate new indigoids with therapeutic potential.  相似文献   

12.
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that courses with progressive degeneration of retinal tissue and loss of vision. Currently, RP is an unpreventable, incurable condition. We propose glycogen synthase kinase 3 (GSK-3) inhibitors as potential leads for retinal cell neuroprotection, since the retina is also a part of the central nervous system and GSK-3 inhibitors are potent neuroprotectant agents. Using a chemical genetic approach, diverse small molecules with different potency and binding mode to GSK-3 have been used to validate and confirm GSK-3 as a pharmacological target for RP. Moreover, this medicinal chemistry approach has provided new leads for the future disease-modifying treatment of RP.  相似文献   

13.
Novel heterocyclic ring-substituted pyrimidines have been designed as inhibitors of glycogen synthase kinase-3beta (GSK-3beta) from the modification of known inhibitors. Several potent inhibitors exhibiting nanomolar activities were discovered against GSK-3beta kinase as well as in an NF-kappaB reporter gene assay. Based on the results from in vitro TNF-alpha release inhibition and in vivo endotoxima, these inhibitors are expected to be useful candidates for treatment of inflammation-related diseases.  相似文献   

14.
In an effort to identify new protein kinase inhibitors with increased potency and selectivity, we have developed the microwave-assisted synthesis of thiazolo[5,4-f]quinazolin-9-ones. The effects of eighteen derivatives on CDK1/cyclin B, CDK5/p25, and GSK-3 were investigated. Several turned out to inhibit GSK-3 in the micromolar range. Molecular modeling studies suggest that the most selective GSK-3 inhibitors 7a-d bind into the ATP-binding site through a key hydrogen bond interaction with Val135 and target the specific hydrophobic backpocket of the enzyme.  相似文献   

15.
Glycogen synthase kinase 3: an emerging therapeutic target   总被引:16,自引:0,他引:16  
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a key target in drug discovery. It has been implicated in multiple cellular processes and linked with the pathogenesis of several diseases. GSK-3 inhibitors might prove useful as therapeutic compounds in the treatment of conditions associated with elevated levels of enzyme activity, such as type 2 diabetes and Alzheimer's disease. The pro-apoptotic feature of GSK-3 activity suggests a potential role for its inhibitors in protection against neuronal cell death, and in the treatment of traumatic head injury and stroke. Finally, selective inhibitors of GSK-3 could mimic the action of mood stabilizers such as lithium and valproic acid and be used in the treatment of bipolar mood disorders.  相似文献   

16.
17.
Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase, functioning in numerous cellular processes including cell proliferation, DNA repair, cell cycle, signaling and metabolic pathways. GSK-3β is implicated in different diseases including inflammation, neurodegenerative disease, diabetes and cancers. GSK-3β is involved in biological processes of tumorigenesis, therefore, it is rational that GSK-3β inhibitors were employed to target malignant tumors. The effects of GSK-3β inhibitors in combination of radiation and chemotherapeutic drugs have been reported in various types of cancers, suggesting GSK-3β would play important roles in cancer treatments. GSK-3β is involved in multiple signal pathway including Wnt/β-catenin, PI3K/PTEN/AKT and Notch. GSK-3β also functions in DNA repair through phosphorylation of DNA repair factors and affecting their binding to chromatin. This review focuses on the molecular mechanism of GSK-3β in DNA repair, special in base excision repair and double-strands break repair, the roles of GSK-3β in inhibition of apoptosis through activation of NF-κB, and the effects of GSK-3β inhibitors on radio- and chemosensitization of various types of cancers.This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.  相似文献   

18.
Glycogen synthase kinase-3β (GSK-3β) has been identified to promote inflammation and its inhibitors have also been proven to treat some inflammatory mediated diseases in animal models. Non-ATP competitive inhibitors inherently have better therapeutical value due to their higher specificity than ATP competitive ones. In this paper, we designed and synthesized a series of new BTZ derivatives as non-ATP competitive GSK-3β inhibitors. Kinetic analysis revealed two typical compounds 6j and 3j showed the different non-ATP competitive mechanism of substrate competition or allosteric modulation to GSK-3β, respectively. As expected, the two compounds showed good specificity in a panel test of 16 protein kinases, even to the closest enzymes, like CDK-1/cyclin B and CK-II. The in vivo results proved that both compounds can greatly attenuate the LPS-induced acute lung injury (ALI) and diminish inflammation response in mice by inhibiting the mRNA expression of IL-1β and IL-6. Western blot analysis demonstrated that they negatively regulated GSK-3β, and the mechanism of the observed beneficial effects of the inhibitors may involve both the increased phosphorylation of the Ser9 residue on GSK-3β and protein expression of Sirtuin 1 (SIRT1). The results support that such novel BTZ compounds have a protective role in LPS-induced ALI, and might be attractive candidates for further development of inflammation pharmacotherapy, which greatly thanks to their inherently high selectivities by the non-ATP competitive mode of action. Finally, we proposed suggesting binding modes by Docking study to well explain the impacts of compounds on the target site.  相似文献   

19.
The purpose of this study was to examine whether glycogen synthase kinase-3 (GSK-3) is involved in colchicine-induced cell death in PC12 cells by using GSK inhibitors. Colchicine increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation or fragmentation. GSK-3 inhibitors such as alsterpaullone, SB216763, and AR-A014418 prevented colchicine-induced cell death and caspase-3 activation. These results suggest that colchicine induces caspase-dependent apoptotic cell death and that GSK-3 activation is involved in cell death in PC12 cells.  相似文献   

20.
Glycogen synthase kinase-3 (GSK-3) is a highly conserved protein serine/threonine kinase ubiquitously distributed in eukaryotes as a constitutively active enzyme. Abnormally high GSK-3 activity has been implicated in several pathological disorders, including diabetes and neuron degenerative and affective disorders. This led to the hypothesis that inhibition of GSK-3 may have therapeutic benefit. Most GSK-3 inhibitors developed so far compete with ATP and often show limited specificity. Our goal is to develop inhibitors that compete with GSK-3 substrates, as this type of inhibitor is more specific and may be useful for clinical applications. We have employed computational, biochemical, and molecular analyses to gain in-depth understanding of GSK-3's substrate recognition. Here we argue that GSK-3 is a promising drug discovery target and describe the strategy and practice for developing specific substrate-competitive inhibitors of GSK-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号