首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress and neuronal death/survival signaling in cerebral ischemia   总被引:11,自引:0,他引:11  
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.  相似文献   

2.
3.
The critical event of the intrinsic pathway of apoptosis following transient global brain ischemia is the release of cytochrome c from the mitochondria. In vitro studies have shown that insulin can signal specifically via phosphatidylinositol-3-OH-kinase (PI3-K) and Akt to prevent cytochrome c release. Therefore, insulin may exert its neuroprotective effects during brain reperfusion by blocking cytochrome c release. We hypothesized that insulin acts through PI3-K, Akt, and Bcl-2 family proteins to inhibit cytochrome c release following transient global brain ischemia. We found that a single bolus of insulin given immediately upon reperfusion inhibited cytochrome c release for at least 24 h, and produced a fivefold improvement in neuronal survival at 14 days. Moreover, insulin's ability to inhibit cytochrome c release was completely dependent on PI3-K signaling and insulin induces phosphorylation of Akt through PI3-K. In untreated animals, there was an increase in mitochondrial Bax at 6 h of reperfusion, and Bax binding to Bcl-XL was disrupted at the mitochondria. Insulin prevented both these events in a PI3-K-dependent manner. In summary, insulin regulates cytochrome c release through PI3-K likely by activating Akt, promoting the binding between Bax and Bcl-XL, and by preventing Bax translocation to the mitochondria.  相似文献   

4.
Cerebral ischemia increases neural progenitor cell proliferation and neurogenesis. However, the precise molecular mechanism is poorly understood. The present study was undertaken to determine roles of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt and their signaling pathways in neural progenitor cells exposed to hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion. Neural progenitor cells were isolated from postnatal mouse brain. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of MEK, but not by LY294002, a specific inhibitor of PI3K, whereas the Akt activation was blocked by LY294002, but not by U0126. Reoxygenation following 4-h hypoxia stimulated cell proliferation, which was dependent on ERK and Akt activation. Inhibitors of growth factor receptor (AG1478) and Src (PP2) and the antioxidant N-acetylcysteine did not affect activation of ERK and Akt, while the Ras and Raf inhibitors inhibited activation of ERK, but not Akt. PKC inhibitors inhibited both ERK and Akt activation. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt survival signaling pathways through a PKC-dependent mechanism. These pathways may be responsible for the repair process during ischemia/reperfusion.  相似文献   

5.
6.
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia. Venkata Prasuja Nakka and Anchal Gusain equally contributed to this work.  相似文献   

7.
Wang XT  Pei DS  Xu J  Guan QH  Sun YF  Liu XM  Zhang GY 《Cellular signalling》2007,19(9):1844-1856
Increasing evidence suggests that the Bcl-2 family proteins play pivotal roles in regulation of the mitochondria cell-death pathway on transient cerebral ischemia. Bad, a BH3-only proapoptotic Bcl-2 family protein, has been shown to be phosphorylated extensively on serine by kinds of kinases. However, the exact mechanisms of the upstream kinases in regulation of Bad signaling pathway remain unknown. Here, we reported that Bad could be phosphorylated not only by Akt1 but also by JNK1/2 after transient global ischemia in rat hippocampal CA1 region. Our data demonstrated that Akt1 mediated the phosphorylation of Bad at serine 136, which increased the interaction of serine 136-phosphorylated Bad with 14-3-3 proteins and prevented the dimerization of Bad with Bcl-Xl, inhibited the release of cytochrome c to the cytosol and the death effector caspase-3 activation, leading to the survival of neuron. In contrast, JNK1/2 induced the phosphorylation of Bad at a novel site of serine 128 after brain ischemia/reperfusion, which inhibited the interaction of PI3K/Akt-induced serine 136-phosphorylated Bad with 14-3-3 proteins, thereby promoted the apoptotic effect of Bad. In addition, activated Akt1 inhibited the activation of Bad(S128) through downregulating JNK1/2 activation, thus inhibiting JNK-mediated Bad apoptosis pathway. Furthermore, the fate of cell to survive or to die was determined by a balance between prosurvival and proapoptotic signals. Taken together, our studies reveal that Bad phosphorylation at two distinct sites induced by Akt1 and JNK1/2 have opposing effects on ischemic brain injury, and present the possibility of Bad as a potential therapeutic target for stroke treatment.  相似文献   

8.
The mu- and m-calpain proteases have been implicated in both pro- or anti-apoptotic functions. Here we compared cell death responses and apoptotic or survival signaling pathways in primary mouse embryonic fibroblasts (MEFs) derived from wild type or capn4 knock-out mice which lack both mu- and m-calpain activities. Capn4(-/-) MEFs displayed resistance to puromycin, camptothecin, etoposide, hydrogen peroxide, ultraviolet light, and serum starvation, which was consistent with pro-apoptotic roles for calpain. In contrast, capn4(-/-) MEFs were more susceptible to staurosporine (STS) and tumor necrosis factor alpha-induced cell death, which provided evidence for anti-apoptotic signaling roles for calpain. Bax activation, release of cytochrome c, and activation of caspase-9 and caspase-3 all correlated with the observed cell death responses of wild type or capn4(-/-) MEFs to the various challenges, suggesting that calpain might play distinct roles in transducing different death signals to the mitochondria. There was no evidence that calpain cleaved Bcl-2 family member proteins that regulate mitochondrial membrane permeability including Bcl-2, Bcl-xl, Bad, Bak, Bid, or Bim. However, activation of the phosphatidylinositol 3 (PI3)-kinase/Akt survival signaling pathway was compromised in capn4(-/-) MEFs under all challenges regardless of the cell death outcome, and blocking Akt activation using the PI3-kinase inhibitor LY294002 abolished the protective effect of calpain to STS challenge. We conclude that the anti-apoptotic function of calpain in tumor necrosis factor alpha- and STS-challenged cells relates to a novel role in activating the PI3-kinase/Akt survival pathway.  相似文献   

9.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

10.
Focal adhesion kinase (FAK) and its downstream signaling targets are implicated in the process of apoptosis induced by external stimuli, in several mammalian systems. In this report, we demonstrate, that medfly (Ceratitis capitata) hemocytes do undergo apoptosis during larval development. In particular, we show using Western blot, ELISA and flow cytometry analysis, that FAK expression silencing in transfected by FAK double-stranded RNA (dsRNA) hemocytes, enhances twofold hemocyte apoptosis, by signaling through Src, MEK/ERK, and PI-3K/Akt signaling pathways. FAK expression silencing, in response to FAK dsRNA treatment, blocks partially the phosphorylation of its downstream targets. Pre-incubation of hemocytes, with specific inhibitors of FAK downstream signaling molecules, demonstrated that all these inhibitors reduced hemocyte viability and enhanced the magnitude of apoptosis about threefold. This data suggest that these pathways contribute to hemocyte survival and/or death during development. The expression and phosphorylation of FAK, Src, PI-3K p85a, Akt, and ERK signaling molecules appear to be dependent upon developmental stages. The expression and phosphorylation of the above signaling molecules, in annexin-positive and annexin-negative hemocytes is also distinct. The maximum expression and phosphorylation of FAK, Src, PI-3K p85a, Akt, and ERK appeared in annexin-positive hemocytes, in both early and late apoptotic hemocytes. The novel aspect of this report is based on the fact that hemocytes attempt to suppress apoptosis, by increasing the expression/phosphorylation of FAK and, hence its downstream targets signaling molecules Src, ERK, PI-3K p85a, and Akt. Evidently, the basic survival pathways among insects and mammals appear to remain unchanged, during evolution.  相似文献   

11.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

12.
Ischemia/reperfusion injury is a major cause of myocardial death. In the heart, cardiac fibroblasts play a critical role in healing post myocardial infarction. TGF-β1 has shown cardioprotective effects in cardiac damage; however, if TGF-β1 can prevent cardiac fibroblast death triggered by ischemia/reperfusion is unknown. Therefore, we test this hypothesis, and whether the canonical and/or non-canonical TGF-β1 signaling pathways are involved in this protective effect. Cultured rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion. Cell viability was analyzed by trypan blue exclusion and propidium iodide by flow cytometry. The processing of procaspases 8, 9 and 3 to their active forms was assessed by Western blot, whereas subG1 population was evaluated by flow cytometry. Levels of total and phosphorylated forms of ERK1/2, Akt and Smad2/3 were determined by Western blot. The role of these signaling pathways on the protective effect of TGF-β1 was studied using specific chemical inhibitors. Simulated ischemia over 8 h triggers a significant cardiac fibroblast death, which increased by reperfusion, with apoptosis actively involved. These effects were only prevented by the addition of TGF-β1 during reperfusion. TGF-β1 pretreatment increased the levels of phosphorylated forms of ERK1/2, Akt and Smad2/3. The inhibition of ERK1/2, Akt and Smad3 also blocked the preventive effects of TGF-β1 on cardiac fibroblast apoptosis induced by simulated ischemia/reperfusion. Overall, our data suggest that TGF-β1 prevents cardiac fibroblast apoptosis induced by simulated ischemia–reperfusion through the canonical (Smad3) and non canonical (ERK1/2 and Akt) signaling pathways.  相似文献   

13.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

14.
Signaling through the PI3K/Akt/FOXO pathway plays an important role in vertebrates in protecting cells from programmed cell death. PI3K and Akt have been similarly shown to be involved in survival signaling in the invertebrate model organism Drosophila. However, it is not known whether PI3K and Akt execute this function by controlling a pro-apoptotic activity of Drosophila FOXO. In this study, we show that elevated signaling through PI3K and Akt can prevent developmentally controlled death in the salivary glands of the fruit fly. We further show that Drosophila FOXO is not required for normal salivary gland death and that the rescue of salivary gland death by PI3K occurs independent of FOXO. These results give support to the notion that FOXOs have acquired pro-apoptotic functions after separation of the vertebrate and invertebrate lineages.  相似文献   

15.
Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4− flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways.  相似文献   

16.
Protein expression in the heart is altered following periods of myocardial ischemia. The changes in protein expression are associated with increased cell size that can be maladaptive. There is little information regarding the regulation of protein expression through the process of mRNA translation during ischemia and reperfusion in the heart. Therefore, the purpose of this study was to identify changes in signaling pathways and downstream regulatory mechanisms of mRNA translation in an in vivo model of myocardial ischemia and reperfusion. Hearts were collected from rats whose left main coronary arteries had either been occluded for 25 min or reversibly occluded for 25 min and subsequently reperfused for 15 min. Following reperfusion, both the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways were activated, as evidenced by increased phosphorylation of Akt (PKB), extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. Activation of Akt stimulated signaling through the protein kinase mammalian target of rapamycin, as evidenced by increased phosphorylation of two of its effectors, the ribosomal protein S6 kinase and the eukaryotic initiation factor eIF4E binding protein 1. Ischemia and reperfusion also resulted in increased phosphorylation of eIF2 and eIF2B. These changes in protein phosphorylation suggest that control of mRNA translation following ischemia and reperfusion is modulated through a number of signaling pathways and regulatory mechanisms.  相似文献   

17.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   

18.
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and one of the leading causes of cancer associated death worldwide. This is due to the highly resistant nature of this malignancy and the lack of effective treatment options for advanced stage HCC patients. The hyperactivity of PI3K/Akt and Ras/Raf/MEK/ERK signaling pathways contribute to the cancer progression, survival, motility, and resistance mechanisms, and the interaction of these two pathways are responsible for the regulation of cancer cell growth and development. Therefore, it is vital to design and develop novel therapeutic options for HCC treatment targeting these hyperactive pathways. For this purpose, novel series of trans-indole-3-ylacrylamide derivatives originated from the lead compound, 3-(1H-indole-3-yl)-N-(3,4,5-trimethoxyphenyl)acrylamide, have been synthesized and analyzed for their bioactivity on cancer cells along with the lead compound. Based on the initial screening, the most potent compounds were selected to elucidate their effects on cellular signaling activity of HCC cell lines. Cell cycle analysis, immunofluorescence, and Western blot analysis revealed that lead compound and (E)-N-(4-tert-butylphenyl)-3-(1H-indole-3-yl)acrylamide induced cell cycle arrest at the G2/M phase, enhanced chromatin condensation and PARP-cleavage, addressing induction of apoptotic cell death. Additionally, these compounds decreased the activity of ERK signaling pathway, where phosphorylated ERK1/2 and c-Jun protein levels diminished significantly. Relevant to these findings, the lead compound was able to inhibit tubulin polymerization as well. To conclude, the novel trans-indole-3-ylacrylamide derivatives inhibit one of the critical pathways associated with HCC which results in cell cycle arrest and apoptosis in HCC cell lines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号