首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse skin model of carcinogenesis has been instrumental in our appreciation of the multistage nature of carcinogenesis. In this system, tumor promotion is a critical step in the generation of tumors and is usually achieved by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Although it is generally assumed that protein kinase C (PKC) is the sole receptor for TPA in this system, we sought to evaluate whether non-PKC pathways could also contribute to the effects of phorbol esters in skin. We documented expression of the high affinity non-PKC phorbol ester receptor and Ras activator RasGRP1 in mouse primary keratinocytes. Overexpression of RasGRP1 in keratinocytes increased the level of active GTP-loaded Ras. TPA treatment further elevated this Ras activation in a PKC-independent manner and induced the translocation and down-regulation of RasGRP1. Overexpression of RasGRP1 in keratinocytes also caused apoptosis. Finally, induction of keratinocyte differentiation by elevation of extracellular calcium suppressed expression of endogenous RasGRP1, whereas overexpression of RasGRP1 inhibited expression of the differentiation markers keratins 1 and 10 induced by high calcium in the medium. Taken together, our results demonstrate that RasGRP1 is an additional diacylglycerol/phorbol ester receptor in epidermal keratinocytes and suggest that activation of this novel receptor may contribute to some of the phorbol ester- and Ras-mediated effects in mouse epidermis.  相似文献   

2.
Cripto-1 is an epidermal growth factor-Cripto/FRL1/Cryptic family member that plays a role in early embryogenesis as a coreceptor for Nodal and is overexpressed in human tumors. Here we report that in the two-stage mouse skin carcinogenesis model, Cripto-1 is highly up-regulated in tumor promoter-treated normal skin and in benign papillomas. Treatment of primary mouse keratinocytes with Cripto-1 stimulated proliferation and induced expression of keratin 8 but blocked induction of the normal epidermal differentiation marker keratin 1, changes that are hallmarks of tumor progression in squamous cancer. Chemical or genetic blockade of the transforming growth factor (TGF)-beta1 signaling pathway using the ALK5 kinase inhibitor SB431542 and dominant negative TGF-beta type II receptor, respectively, had similar effects on keratinocyte differentiation. Our results show that Cripto-1 could block TGF-beta1 receptor binding, phosphorylation of Smad2 and Smad3, TGF-beta-responsive luciferase reporter activity, and TGF-beta1-mediated senescence of keratinocytes. We suggest that inhibition of TGF-beta1 by Cripto-1 may play an important role in altering the differentiation state of keratinocytes and promoting outgrowth of squamous tumors in the mouse epidermis.  相似文献   

3.
Monascin (1) constitutes one of the azaphilonoid pigments in the extracts of Monascus pilosus-fermented rice (red-mold rice). Compound 1 was evaluated for its anti-tumor-initiating activity via oral administration on the two-stage carcinogenesis of mouse skin tumor induced by peroxynitrite (ONOO-; PN) or by ultraviolet light B (UVB) as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. Compound 1 exhibited marked inhibitory activity on both PN- and UVB-induced mouse skin carcinogenesis tests. These findings suggest that compound 1 may be valuable as potential cancer chemopreventive agent in chemical and environmental carcinogenesis.  相似文献   

4.
5.
6.
7.
Recent work has shown that peroxisome proliferator-activated receptor beta (PPARbeta) attenuates cell proliferation and skin carcinogenesis, and this is due in part to regulation of ubiquitin C expression. In these studies, the role of PPARbeta in modulating ubiquitin-dependent protein kinase Calpha (PKCalpha) levels and phosphorylation signaling pathways was evaluated. Intracellular phosphorylation analysis showed that phosphorylated PKCalpha and other kinases were lower in wild-type mouse skin treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) as compared with PPARbeta-null mouse skin. No differences in expression levels of other PKC isoforms present in skin were observed. Lower ubiquitination of PKCalpha was found in TPA-treated PPARbeta-null skin as compared with wild-type, and inhibition of ubiquitin-dependent proteasome degradation prevented TPA-induced down-regulation of PKCalpha. The activity of PKCalpha and downstream signaling kinases is enhanced, and expression of cyclooxygenase-2 (COX-2) is significantly greater, in PPARbeta-null mouse skin in response to TPA compared with wild-type mouse skin. Inhibition of PKCalpha or COX-2 reduced cell proliferation in TPA-treated PPARbeta-null keratinocytes in a dose-dependent manner, whereas it only slightly influenced cell proliferation in wild-type keratinocytes. Combined, these studies provide strong evidence that PPARbeta attenuates cell proliferation by modulating PKCalpha/Raf1/MEK/ERK activity that may be due in part to reduced ubiquitin-dependent turnover of PKCalpha.  相似文献   

8.
Cimigenol (1) and 39 related compounds were screened as potential antitumor promoters by examining the ability of the compounds to inhibit Epstein-Barr virus early antigen (EBV-EA) activation (induced by 12-O-tetradecanoylphorbol-13-acetate) in Raji cells. Structure-activity relationship analysis indicated that compound 1 showed the highest activity and also exhibited significant inhibitory effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test. These data suggest that 1 and the related compounds might be valuable anti-tumor promoters.  相似文献   

9.
10.
Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation, there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells, which resemble primitive ectoderm, can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM, this differentiation is responsive to TGF-beta family members in a concentration-dependent manner, with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm, including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1, -beta 2, or -beta 3, acid FGF, or basic FGF is added individually to CDM. In vivo, at day 6.5 of mouse development, activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together, our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.  相似文献   

11.
The effects of various promoters in two-step carcinogenesis on the induction of histidine decarboxylase in the skin of mice was investigated. The potencies of various phorbol esters in inducing histidine decarboxylase activity were parallel with their tumor-promoting activities. Indole alkaloids such as dihydroteleocidin B and lyngbyatoxin A, which induced ornithine decarboxylase and promoted tumor development in the skin of mice with the same potency as 12-O-tetradecanoylphorbol-13-acetate (TPA), also induced histidine decarboxylase activity. These results suggest that histamine produced by this inducible histidine decarboxylase may play some role in tumor promotion.  相似文献   

12.
To examine the mechanisms by which transforming growth factors (TGFs) regulate the proliferation of eukaryotic cells, five cell lines, from different species and tissues, were treated with three agents that inhibit DNA synthesis and proliferation: BSC-1 cell-derived growth inhibitor (GI/TGF-beta), platelet-derived transforming growth factor-beta (TGF-beta), and 12-O-tetradecanoylphorbol-13-acetate. The cell lines tested were mink lung CCL 64 epithelial cells, Maloney sarcoma virus-transformed CCL 64.1, monkey kidney BSC-1 epithelial cells, human epidermoid A431 cells, and mouse embryo AKR-2B (clone 84A) cells. All cell lines responded to one or more of these agents by synthesizing and secreting a 48 to 51-kDa protein (IIP48). The TGF-beta s and 12-O-tetradecanoylphorbol-13-acetate had little or no effect on the incorporation of [35S] methionine into other secreted proteins or on the pattern of [35S]methionine-labeled intracellular proteins analyzed by one-dimensional, sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The maximum increase in induction of IIP48 varied from 2-fold to greater than 800-fold compared with the controls and occurred within 6 h of adding GI/TGF-beta to CCL 64 cells. Actinomycin D, alpha-amanitin, or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole selectively decreased both the control and induced levels of IIP48 even after as little as 6 h of incubation. Thus, it appears that IIP48 mRNA turns over rapidly. Induction of IIP48 was dissociated from the inhibition of DNA synthesis by GI/TGF-beta. However, we found that epidermal growth factor and GI/TGF-beta act synergistically to increase the secreted level of IIP48. Others have shown that epidermal growth factor and TGF-beta act synergistically to stimulate growth of cells in agar. IIP48 from CCL 64, BSC-1, and AKR-2B cells is specifically immunoprecipitated by antibody to bovine plasminogen activator inhibitor. We found previously that TGF-beta also inhibits the production of major excreted protein, a thiol protease. It is proposed that TGF-beta is able to promote anchorage-independent growth of untransformed cells because of its ability to inhibit the production of secreted proteases and to increase the production of protease inhibitors.  相似文献   

13.
We have studied the induction of papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene and in their nontransgenic littermates. The transgenic animals displayed a basal epidermal ornithine decarboxylase activity that was nearly 20 times higher than in their nontransgenic littermates. A single topical application of 12-O-tetradecanoylphorbol-13-acetate induced a much more profound and longer-lasting increase in transgene-derived ornithine decarboxylase activity in comparison with the endogenous enzyme activity. Initiation of skin tumorigenesis with a single topical application of dimethylbenz[a]antracene followed by twice-weekly application of 12-O-tetradecanoylphorbol-13-acetate resulted in the appearance of first papillomas both in nontransgenic and transgenic animals by week 7. However, after 11 weeks of 12-O-tetradecanoylphorbol-13-acetate application, the number of papillomas per animal was almost 100% higher in the transgenic animals than in their nontransgenic littermates. These results indicate that an overexpression of epidermal ornithine decarboxylase confers a growth advantage on skin tumors in vivo.  相似文献   

14.
15.
BackgroundA natural pterostilbene analogue isolated from the herb Sphaerophysa salsula, 3′-hydroxypterostilbene (HPSB), exhibits antiproliferative activity in several cancer cell lines; however, the inhibitory effects of HPSB on skin carcinogenesis remains unclear.PurposeThe aim of this study was to evaluate the inhibitory effects of HPSB on two-stage skin carcinogenesis in mice and its potential mechanism.Study Design and MethodsThis study investigated the anti-inflammatory and anti-tumor effects of HPSB in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated acute skin inflammation and 7,12-dimethylbenz[a]anthracene (DMBA)/TPA-induced two-stage skin carcinogenesis model. In addition, the effects of HPSB on the modulation of the phase I and phase II metabolizing enzymes in the DMBA-induced HaCaT cell model were investigated.ResultsThe results provide evidence that topical treatment with HPSB significantly inhibits TPA-induced epidermal hyperplasia and leukocyte infiltration through the down-regulation of cyclooxygenase-2 (COX-2), matrix metalloprotein-9 (MMP-9), and ornithine decarboxylase (ODC) protein expression in mouse skin. Furthermore, HPSB suppresses DMBA/TPA-induced skin tumor incidence and multiplicity via the inhibition of proliferating cell nuclear antigen (PCNA), Cyclin B1 and cyclin-dependent kinase 1 (CDK1) expression in the two-stage skin carcinogenesis model. In addition, pretreatment with HPSB markedly reduces DMBA-induced cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1) gene expression in human keratinocytes; however, HPSB does not significantly affect the gene expression of the phase II enzymes.ConclusionThis is the first study to show that topical treatment with HPSB prevents mouse skin tumorigenesis. Overall, our study suggests that natural HPSB may serve as a novel chemopreventive agent capable of preventing carcinogen activation and inflammation-associated tumorigenesis.  相似文献   

16.
Ahn EH  Kim DW  Kim DS  Woo SJ  Kim HR  Kim J  Lim SS  Kang TC  Kim DJ  Suk KT  Park J  Luo Q  Eum WS  Hwang HS  Choi SY 《BMB reports》2011,44(5):329-334
Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor- α. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases. [BMB reports 2011; 44(5): 329-334].  相似文献   

17.
The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of [3H]thymidine incorporation. The decrease of [3H]thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions (1.8 mM Ca2+, differentiation-promoting culture environment) was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions. Thus, the effect of TGF-beta on keratinocyte differentiation is Ca2+ dependent. It enhances differentiation of human keratinocytes under high Ca2+ conditions, but inhibits differentiation under low Ca2+ conditions. Taken together, there is a clear discrepancy between TGF-beta effects on growth inhibition and induction of differentiation in human keratinocytes. These data indicate that growth inhibition of human keratinocytes by TGF-beta is direct and not induced by differentiation.  相似文献   

18.
Serum-free mouse embryo cells cultured in medium supplemented with insulin, transferrin, high-density lipoprotein, and fibronectin are dependent on epidermal growth factor for survival. Cycloheximide or actinomycin D prevented cell death caused by growth factor deprivation, suggesting that cell death required the synthesis of RNA and protein, a phenomenon similar to that reported for neuronal cell death in the absence of nerve growth factor. Orthovanadate, an inhibitor of phosphotyrosine phosphatases, and 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, also prevented serum-free mouse embryo cell death in the absence of epidermal growth factor.  相似文献   

19.
To search for cancer chemopreventive agents from natural sources, 13alpha,14alpha-epoxy-21alpha-methoxyserratan-3-one, 21alpha-methoxyserrat-13-en-3-one, and 21alpha-hydroxy-3beta-methoxyserrat-14-en-30-al isolated from the cuticle of Picea jezoensis (Sieb. et Zucc.) Carr. var. jezoensis (Pinaceae) were investigated for inhibitory effects in a two-stage mouse skin carcinogenesis test on mouse skin with 7,12-dimethylbenz[a]anthracene (DMBA) as initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as promoter. 21Alpha-hydroxy-3beta-methoxyserrat-14-en-30-al and 13alpha,14alpha-epoxy-21alpha-methoxyserratan-3-one were found to exhibit strong antitumor-promoting activities in the in vivo carcinogenesis test.  相似文献   

20.
The molecular changes associated with early skin carcinogenesis are largely unknown. We have previously identified 11 genes whose expression was up- or down-regulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin keratinocyte progenitor cells (Wei, S.-J., Trempus, C. S., Cannon, R. E., Bortner, C. D., and Tennant, R. W. (2003) J. Biol. Chem. 278, 1758-1768). Here, we show an induction of a nucleoside diphosphate protein kinase B (NDPK-B) gene in response to TPA or UV radiation (UVR). TPA or UVR significantly induced the expression of NDPK-B both in vivo hyperplastic mouse skin and in vitro mouse JB6 Cl 41-5a epidermal cells. Indeed, this gene was also up-regulated in TPA or UVR-mediated skin tumors including papillomas, spindle cell tumors, and squamous cell carcinomas, relative to adjacent normal skins. Functional studies by constitutive expression of nm23-M2/NDPK-B in TPA susceptible JB6 Cl 41-5a and TPA-resistant JB6 Cl 30-7b preneoplastic epidermal cell lines showed a remarkable gene dosage-dependent increase in foci-forming activity, as well as an enhancement in the efficiency of neoplastic transformation of these cells in soft agar but no effect on proliferation in monolayer cultures. Interestingly, stable transfection of the nm23-M2/NDPK-B del-RGD or G106A mutant gene in JB6 Cl 41-5a cells selectively abrogated NDPK-B-induced cellular transformation, implicating a possible Arg105-Gly106-Asp107 regulatory role in early skin carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号