首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determination of quantitative changes in the pattern of serum bile acids is important for the monitoring of diseases affecting bile acid metabolism. A sensitive and specific high-performance liquid chromatography (HPLC)-MS/MS method was developed for the differentiated quantification of unconjugated as well as glycine- and taurine-conjugated cholic, chenodeoxycholic (CDCA), deoxycholic (DCA), ursodeoxycholic (UDCA) and lithocholic acid (LCA) in serum samples. After solid-phase extraction and reversed-phase HPLC separation, detection of the conjugated bile acids was performed using electrospray ionization (ESI)-MS/MS and selected reaction monitoring mode, whereas unconjugated bile acids were determined by ESI-MS and selected ion monitoring mode. The within-day and between-day coefficients of variation were below 7% for all bile acids and the recovery rates of the extraction procedure were between 84.9 and 105%. The developed method was applied to a group of 21 healthy volunteers and preliminary reference intervals in serum were established. In patients with drug-induced cholestasis, an elevation of primary bile acids has been shown.  相似文献   

2.
Measurement of serum aldosterone is clinically important in the diagnosis of hypertension. While isotope dilution gas chromatography-mass spectrometry (ID-GC-MS) provides reliable results, it requires derivatization and is lengthy and time-consuming. Detection by liquid chromatography-mass spectrometry (LC-MS) is a potentially superior method. The analysis utilizes 0.5mL of serum. The samples were extracted with dichloromethane-ether. The extract was evaporated to dryness and aldosterone was analyzed by LC-MS/MS operating in the negative mode ESI after separation on a reversed-phase column. Aldosterone was also measured by RIA. The calibration curves for analysis of serum aldosterone exhibited consistent linearity and reproducibility in the range of 60-3000pmol/L. Interassay CVs were 4.3-7.5% at aldosterone concentrations of 97-993pmol/L. The lower limit of quantitation (LOQ) was 30pmol/L (signal to noise ratio=10). The mean recovery of the analyte added to serum ranged from 95 to 102%. The regression equation by LC-MS/MS (x) and RIA (y) method was: y=1.33x+185 (r=0.95; n=124). Sensitivity and specificity of the LC-MS/MS method for serum aldosterone offer advantages over GC-MS by eliminating derivatization. The novel method is rapid, reliable and simple to perform with a routine LC-MS/MS spectrometer. The sensitivity is adequate for patient samples. Aldosterone concentrations reported by nonextraction RIA were consistently higher than those produced by LC-MS/MS.  相似文献   

3.
A liquid chromatography-tandem mass spectrometric (LC-MS-MS) method with a rapid and simple sample preparation was developed and validated for the determination of Tirofiban in biological fluids. Tirofiban in serum samples was extracted and cleaned up by using an automated solid phase extraction method. An external calibration was used. The mass spectrometer was operated in the multiple reaction monitoring mode (MRM). A good linear response over the range of 2-200ng/ml was demonstrated. The accuracy for Tirofiban ranged from 94.8 to 110.8% within-day and from 103.0 to 104.7% between-day. The lower limit of quantification was 2ng/ml. This method is suitable for pharmacokinetic studies.  相似文献   

4.
ent-Kaurenoic acid (KA) is a key intermediate connected to a phytohormone gibberellin. To date, the general procedure for quantifying KA is by using traditional gas chromatography–mass spectrometry (GC–MS). In contrast, gibberellins, which are more hydrophilic than KA, can be easily quantified by liquid chromatography-tandem mass spectrometry (LC–MS/MS). In this study, we have established a new method to quantify KA by LC–MS/MS by taking advantage of a key feature of KA, namely the lack of fragmentation that occurs in MS/MS when electrospray ionization (ESI) is in the negative mode. Q1 and Q3 were adopted as identical channels for the multiple reaction monitoring of KA. The method was validated by comparing with the results obtained by selected ion monitoring in GC–MS. This new method could be applicable for the quantification of other hydrophobic compounds.  相似文献   

5.
6.
In the present paper we report the LC-MS/MS determination of residues of 12 anabolic steroids in bovine serum, as an expansion of our work protocols for steroids determination in biological matrices. Steroids analyzed included α-zearalanol, β-zearalanol, α-trenbolone, β-trenbolone, methyltestosterone, α-estradiol, β-estradiol, ethynylestradiol, α-boldenone, β-boldenone, α-nortestosterone and β-nortestosterone. Following protein precipitation, serum samples were cleaned up by solid-phase extraction using Oasis HLB and Amino cartridges. Atmospheric pressure chemical ionization (APCI) in both positive and negative ionization modes was used and mass spectrometry detection was carried out in multiple reaction monitoring mode following two or (in most cases) three product ions per precursor ion. The method was validated in accordance with the Commission Decision 2002/657/EC. The decision limit (CCα) values obtained, ranged from 0.01 to 0.07 ng/ml and the detection capability (CCβ) values obtained ranged from 0.02 to 0.12 ng/ml. The recoveries ranged from 70.2% to 118.2%. The developed method is suitable for routine and confirmatory purposes such as control of illegal use in livestock production.  相似文献   

7.
A rapid, simple and sensitive method was developed for the determination of para-aminohippuric acid (PAH) in rat plasma using liquid chromatography tandem mass spectrometry (LC-MS-MS). Acetaminophen was used as the internal standard. Chromatographic separation was performed using a Symmetry C18 column and the mobile phase was composed of A: 2 mM ammonium formate and 0.1% formic acid in water and B: 2 mM ammonium formate and 0.1% formic acid in acetonitrile (ACN) (A:B, 30:70, v/v). Detection was performed on a triple–quadrupole tandem mass spectrometer using positive ion mode electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 195.2 → 120.2 and 152.1 → 110.1 for PAH and acetaminophen, respectively. Good linearity is observed over the concentration range of 0.1–500 μg/ml. The method was proved to be accurate and reliable and was applied to a pharmacokinetic study in rat.  相似文献   

8.
We established an improved method for quantification of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) molecular species in neonatal serum using high-performance liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). A multiple reaction monitoring (MRM) mode of positive ionization for MS/MS was used. The method involved purification of phospholipids by solid phase extraction (SPE) from a 20-microl minimum specimen of serum. The assayed values of authentic 16:0-LPC and 18:0-LPC showed a linear response, and our quantitative results showed high precision for the all species of PC and LPC. Then, we quantified PC and LPC in adult and neonatal serum and compared them. Day 0-1 neonatal serum 16:0-, 18:0-, 18:1-, 18:2-LPC levels were significantly lower than adult ones. All species LPC levels in the day 0-1 neonates were significantly lower than day 4-8 neonates. Day 0-1 neonatal serum 16:0/18:2-, 18:0/18:2-PC levels were significantly lower than adult ones. Our method is advantageous for precise assessments of the relationships between PCs/LPCs levels and neonatal infectious diseases.  相似文献   

9.
In this study, the extraction of γ-hydroxybutyrate (GHB) from urine using solid-phase extraction (SPE) is described. SPE was performed on anion exchange columns after samples of urine had been diluted with de-ionized water. After application of the diluted samples containing GHB-d(6) as an internal standard, the sorbent was washed with deionized water and methanol and dried. The GHB was eluted from the SPE column with a solvent consisting of methanol containing 6% glacial acetic acid. The eluent was collected, evaporated to dryness, and dissolved in mobile phase (100 μL) for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative multiple reaction monitoring (MRM) mode. Liquid chromatography was performed in gradient mode employing a biphenyl column and a mobile phase consisting of acetontitrile (containing 0.1% formic acid) and 0.1% aqueous formic acid. The total run time for each analysis was less than 5 min. The limits of detection/quantification for this method were determined to be 50 and 100 ng/mL, respectively. The method was found to be linear from 500 ng/mL to 10,000 ng/mL (r(2)>0.995). The recovery of GHB was found to be greater than 75%. In this report, results of authentic urine samples analyzed for GHB by this method are presented. GHB concentrations in these samples were found to be range from less than 500 ng/mL to 5110 ng/mL.  相似文献   

10.
The present work describes the development of HPLC-mass spectrometric systems equipped with an electrospray interface for the quantitative analysis of bile acids. Good separation of free as well as glycine- and taurine-conjugated bile acids was achieved with a C18 reversed-phase column (3 μm particle size, 70 × 4.6 mm I.D.) employing methanol-15 mM ammonium acetate as the mobile phase for both isocratic and gradient mode, at a flow-rate of 0.3 ml/min. This system permits post-column splitting of the eluate for analysis by two different detectors: (1) electrospray-mass spectrometer with a flow-rate of 18 μl/min; and (2) a complementary evaporative light scattering mass detector. When bile salts were ionized in the electrospray interface operating in the negative-ion mode, only [M  H] molecular ions were generated; the detection limit was 15 pg injected for all bile acids studied. In the second system, a semi-micro pre-column splitting apparatus (Acurate, LC Packings) was utilized: with this device the flow-rate from the HPLC pump was reduced to 1.4 μl/min and bile acids were separated with a micro-bore C18 column (3 μm particle size, 150 × 0.30 I.D.), using the same mobile phase as above. With this latter system, a head-column enrichment technique can be used: the amount injected can be increased from 60 to 200 nl, permitting an improvement in the detection limit to 5 pg injected. Application of the HPLC-electrospray-mass spectrometric method to bile and serum bile acid analysis is described; preliminary data on the ability of the first system to determine the 13C/12C isotope ratio in 13C-labeled bile acid enriched serum is also critically discussed.  相似文献   

11.
Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d4-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d4-EA) and the internal standard 13C2-EA. Selected reaction monitoring of m/z 66  m/z 48 (d4-EA) and m/z 64  m/z 46 (13C2-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d4-AEA hydrolysis obeyed Michaelis–Menten kinetics (KM = 12.3 μM, Vmax = 27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC50 = 24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa.  相似文献   

12.
13.
An increasing number of proteomic strategies rely on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect and identify constituent peptides of enzymatically digested proteins obtained from various organisms and cell types. However, sample preparation methods for isolating membrane proteins typically involve the use of detergents and chaotropes that often interfere with chromatographic separation and/or electrospray ionization. To address this problem, a sample preparation method combining carbonate extraction, surfactant-free organic solvent-assisted solubilization, and proteolysis was developed and demonstrated to target the membrane subproteome of Deinococcus radiodurans. Out of 503 proteins identified, 135 were recognized as hydrophobic on the basis of their calculated hydropathy values (GRAVY index), corresponding to coverage of 15% of the predicted hydrophobic proteome. Using the PSORT algorithm, 53 of the proteins identified were classified as integral outer membrane proteins and 215 were classified as integral cytoplasmic membrane proteins. All identified integral cytoplasmic membrane proteins had from 1 to 16 mapped transmembrane domains (TMDs), and 65% of those containing four or more mapped TMDs were identified by at least one hydrophobic membrane spanning peptide. The extensive coverage of the membrane subproteome (24%) by identification of highly hydrophobic proteins containing multiple TMDs validates the efficacy of the described sample preparation technique to isolate and solubilize hydrophobic integral membrane proteins from complex protein mixtures.  相似文献   

14.
Surface-enhanced laser desorption/ionization (SELDI) time-of-flight (TOF) mass spectrometry (MS) has been widely applied for conducting biomarker research with the goal of discovering patterns of proteins and/or peptides from biological samples that reflect disease status. Many diseases, ranging from cancers of the colon, breast, and prostate to Alzheimer's disease, have been studied through serum protein profiling using SELDI-based methods. Although the results from SELDI-based diagnostic studies have generated a great deal of excitement and skepticism alike, the basis of the molecular identities of the features that underpin the diagnostic potential of the mass spectra is still largely unexplored. A detailed investigation has been undertaken to identify the compliment of serum proteins that bind to the commonly used weak cation exchange (WCX-2) SELDI protein chip. Following incubation and washing of a standard serum sample on the WCX-2 sorbent, proteins were harvested, digested with trypsin, fractionated by strong cation exchange liquid chromatography (LC), and subsequently analyzed by microcapillary reversed-phase LC coupled online with an ion-trap mass spectrometer. This analysis resulted in the identification of 383 unique proteins in the WCX-2 serum retentate. Among the proteins identified, 50 (13%) are documented clinical biomarkers with 36 of these (72%) identified from multiple peptides.  相似文献   

15.
An immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantitation of the zinc endopeptidase matrix metalloproteinase 9 (MMP-9) from mouse serum. Sample preparation for the assay included magnetic bead-based enrichment using an MMP-9 antibody and was performed in a 96-well plate format using a liquid-handling robotic platform. The surrogate peptide GSPLQGPFLTAR derived from MMP-9 by trypsin digestion was monitored using an on-line capillary flow trap-release chromatography setup incorporating a series of trap columns (C18, strong cation exchange, and another C18) prior to nanoflow chromatography and nanospray ionization with selected reaction monitoring (SRM) detection. The assay was fit-for-purpose validated and found to be accurate (<15% interbatch relative error) and precise (<15% interbatch coefficient of variation) across a range from 0.03 to 7.3 nM mouse MMP-9. Finally, the method was employed to measure MMP-9 concentrations in 30 naïve mouse serum samples, and results were compared with those obtained by an immunoassay.  相似文献   

16.
A highly sensitive and quantitative LC/MS/MS assay for the determination of tilmicosin in serum has been developed and validated. For sample preparation, 0.2 mL of canine serum was extracted with 3 mL of methyl tert-butyl ether. The organic layer was transferred to a new vessel and dried under nitrogen. The sample was then reconstituted for analysis by high performance liquid chromatography-tandem mass spectrometry. A Phenomenex Luna C8(2) analytical column was used for the chromatographic separation. The eluent was subsequently introduced to the mass spectrometer by electrospray ionization. A single range was validated for 50-5000 ng/mL for support of toxicokinetic studies. The inter-day relative error (inaccuracy) for the LLOQ samples ranged from -5.5% to 0.3%. The inter-day relative standard deviations (imprecision) at the respective LLOQ levels were < or =10.1%.  相似文献   

17.
Commonly, prior to mass spectrometry based analysis of proteins or protein mixtures, the proteins are subjected to specific enzymatic proteolysis. For this purpose trypsin is most frequently used. However, the process of proteolysis is not unflawed. For example, some side activities of trypsin are known and have already been described in the literature (e.g., chymotryptic activity). Here, we describe the occurrence of transpeptidated peptides during standard proteome analysis using two-dimensional polyacrylamide gel electrophoresis followed by mass spectrometric protein identification. Different types of transpeptidated peptides have been detected. The most frequently observed transpeptidation reaction is N-terminal addition of arginine or lysine to peptides. Furthermore, addition of two amino acids to the N-terminus of a peptide has also been detected. Another transpeptidation that we observed, is combination of two peptides, which were originally located in different regions of the analyzed protein. Currently, the full amount of peptides generated by transpeptidation is not clear. However, it should be recognized that protein information is presently lost as these effects are not detectable with available database search software.  相似文献   

18.
Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for the degradation of the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). FAAH inhibitors may be useful in treating many disorders involving inflammation and pain. Although brain FAAH may be the relevant target for inhibition, rat studies show a correlation between blood and brain FAAH inhibition, allowing blood FAAH activity to be used as a target biomarker. Building on experience with a rat leukocyte FAAH activity assay using [3H]AEA, we have developed a human leukocyte assay using stably labeled [2H4]AEA as substrate. The deuterium-labeled ethanolamine reaction product ([2H4]EA) was analyzed by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) in the positive electrospray ionization (ESI) mode. The response for [2H4]EA was linear from 10 nM to 10 μM, and the analysis time was less than 6 min/sample. Results using the [2H4]AEA and HPLC–MS/MS method agreed well with those obtained using the [3H]AEA radiometric assay. In addition to using a nonradioactive substrate, the HPLC–MS/MS method had increased sensitivity with lower background. Importantly, the assay preserved partial FAAH inhibition resulting from ex vivo treatment with a time-dependent irreversible inhibitor, suggesting its utility with clinical samples. The assay has been used to profile the successful inhibition of FAAH in recent clinical trials.  相似文献   

19.
There has been a recent explosion in research concerning novel bioactive sphingolipids (SPLs) such as ceramide (Cer), sphingosine (Sph) and sphingosine 1-phosphate (Sph-1P) that necessitates development of accurate and user-friendly methodology for analyzing and quantitating the endogenous levels of these molecules. ESI/MS/MS methodology provides a universal tool used for detecting and monitoring changes in SPL levels and composition from biological materials. Simultaneous ESI/MS/MS analysis of sphingoid bases (SBs), sphingoid base 1-phosphates (SB-1Ps), Cers and sphingomyelins (SMs) is performed on a Thermo Finnigan TSQ 7000 triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) positive ionization mode. Biological materials (cells, tissues or physiological fluids) are fortified with internal standards (ISs), extracted into a one-phase neutral organic solvent system, and analyzed by a Surveyor/TSQ 7000 LC/MS system. Qualitative analysis of SPLs is performed by a Parent Ion scan of a common fragment ion characteristic for a particular class of SPLs. Quantitative analysis is based on calibration curves generated by spiking an artificial matrix with known amounts of target synthetic standards and an equal amount of IS. The calibration curves are constructed by plotting the peak area ratios of analyte to the respective IS against concentration using a linear regression model. This robust analytical procedure can determine the composition of endogenous sphingolipids (ESPLs) in varied biological materials and achieve a detection limit at 1 pmol or lower level. This and related methodology are already defining unexpected specialization and specificity in the metabolism and function of distinct subspecies of individual bioactive SPLs.  相似文献   

20.
A liquid chromatography-diode array detection-electrospray ionization ion trap mass spectrometry (LC-DAD-ESI-MS(n)) method was established for the analysis of danshensu, caffeic acid, ferulic acid and isoferulic acid in rat plasma, bile, urine and feces after oral administration or intravenous injection. Liquid-liquid extraction was employed for the preparation of biosamples, and the chromatographic separation was carried out using an Agilent Zorbax Extend C(18) reversed phase column and acetonitrile-0.1% formic acid as the mobile phase. Totally nineteen metabolites were detected and identified as prototype, methylated, hydroxylated, sulfated and glucuronized conjugates. The metabolism of the individual phenolic acids in biosamples was investigated, and the metabolic pathway was proposed. By comparing the metabolism of different compounds which shared similar structures, we were able to find that methylation was the main pathway of danshensu metabolism, and the double bond on the side chain was critical for the drug excretion via bile and the formation of glucuronized conjugates. The results proved that the established method was simple, sensitive and reliable, which could be used to detect and identify the structures of metabolites and to better understand their in vivo metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号