首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Summary We describe the structure of a gene expressed in the salivary gland cells of the dipteranChironomus tentans and show that it encodes 1 of the approximately 15 secretory proteins exported by the gland cells. This sp115,140 gene consists of approximately 65 copies of a 42-bp sequence in a central uninterrupted core block, surrounded by short nonrepetitive regions. The repeats within the gene are highly similar to each other, but divergent repeats are present in a pattern which suggests that the repeat structure has been remodeled during evolution. The 42-bp repeat in the gene is a simple variant of the more complex repeat unit present in the Balbiani ring genes, encoding four of the other secretory proteins. The structure of the sp115,140 gene suggests that related repeat structures have evolved from a common origin and resulted in the set of genes whose secretory proteins interact in the assembly of the secreted protein fibers.  相似文献   

2.
Summary The large, repetitive Balbiani ring (BR) genes, BR 1, 2, and 6, inChironomus tentans originated from a short ancestral sequence and have all evolved according to analogous amplification schemes. We analyzed the structures of the BR-encoded secretory proteins and defined the parts that have been conserved during the evolutionary process. The BR products show striking similarities, with the BR 1 and BR 2 products being more similar to each other than to the BR 6 product. In the constant (C) region of the repeat units, 7 of the 30 amino acid residues are strictly conserved; 4 of these are the cysteine residues. The subrepeat (SR) regions of all the BR products are dominated by repeated tripeptide elements rich in proline and charged amino acid residues. Most of the amino acid replacements in both regions are conservative. Secondary structure predictions suggested that the C regions of the BR 1 and BR2 products have several elements of secondary structure: an -helix, a -strand, and one or two reverse turns, as in globular structures. The prediction for the C region of the BR 6 product is similar but lacks a -strand. The predictions for the intervening SR regions appear less conclusive, but are clearly different from those for the C regions, and suggest regular structures not differing in their conformational elements. The SR regions evolved from an ancestor sequence similar to the C region; thus, the BR products seem to represent an example of evolution from one structure to two differently folded products. It is proposed that the alignment and polymerization of the long BR proteins could be promoted by the repetitive structure of the molecules, due to the possibility of forming disulfide bridges between half-cystine residues and electrostatic interactions between the charged residues of the SR regions. The divergence among the BR products is discussed in relation to possible functional differences among the members of the BR gene family.  相似文献   

3.
The salivary gland secretion in the dipteran Chironomus tentans is composed of approximately 15 different secretory proteins. The most well known of the corresponding genes are the four closely related Balbiani ring (BR) genes, in which the main part of each approximately 40-kb gene is composed of tandemly arranged repetitive units. Six of the seven additional secretory protein genes described share structural similarities with the BR genes and are members of the same BR multigene family. Here we report the identification of a new secretory protein gene, the spl2 gene, encoding the smallest component of the C. tentans salivary gland secretion. The gene has a corresponding mRNA length of approximately 0.7 kb and codes for a protein with a calculated molecular weight of 7,619 Da. The sp12 gene was characterized in seven Chironomus species. Based on a comparison of the orthologous gene sequences, we conclude that the sp12 gene has a repetitive structure consisting of diverged 21-by-long repeats. The repeat structure and the codon composition are similar to the so-called SR regions of the BR genes and the sp 12 gene may represent a diverged member of the BR multigene family. Correspondence to: L. Wieslander  相似文献   

4.
Summary The four Balbiani ring (BR) genes, BR1, BR2.1, BR2.2, and BR6 in the midge Chironomus tentans constitute a gene family encoding secretory proteins with molecular weights of approximately 106 daltons. The major part of each gene is known to consist of tandemly organized composite repeat units resulting in a hierarchic repeat arrangement.Here, we present the sequence organization of the 5 part of the BR2.2 and BR6 genes and describe the entire transcribed part of the two genes. As the BR1 and BR2.1 genes were also fully characterized recently, this allows the comparison of all genes in the BR gene family.All four genes share the same exon-intron structure and have evolved by gene duplications starting from a common ancestor, having the same overall organization as the BR genes of today.The genes encode proteins that have an approximately 10,000-amino acid residue extended central domain, flanked by a highly charged, 200-residue amino-terminal domain and a globular 110-residue carboxy-terminal domain. Exons 1–3 and the beginning of exon 4 encode the amino-terminal domain, which throughout contains many regions built from short repeats. These repeats are often degenerate as to repeat unit and sequence and are present in different numbers between the genes. In several instances these repeat structures, however, are conserved at the protein level where they form positively or negatively charged regions.Each BR gene has a 26–38-kb-long exon 4, which consists of an array of 125–150 repeat units and encodes the central domain. The number of repeat units appears to be largely preserved by selection and all repeat units in the array are very efficiently homogenized. Occasionally variant repeats have been introduced, presumably from another BR gene by gene conversion, and spread within the array.Introns 1–3 at the 5 end of the genes have diverged extensively in sequence and length between the genes. In contrast, intron 4 at the 3 end is virtually identical between three of the four genes, suggesting that gene conversion homogenizes the 3 ends of the genes, but not the 5 ends. Offprint requests to: L. Wieslander  相似文献   

5.

Background

The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes.

Results

The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150–250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations.

Conclusions

We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-819) contains supplementary material, which is available to authorized users.  相似文献   

6.
U Lendahl  L Wieslander 《Cell》1984,36(4):1027-1034
We describe the internal organization of a large part of the Balbiani ring (BR) 6 gene in Chironomus tentans. The BR6 gene is a diverged member of the BR gene family. It displays the characteristic hierarchic organization of repetitive sequences, but in the constant region of the repeat units the overall sequence homology is only 49% when compared to other BR genes. All four cysteines are among the few amino acids conserved in the constant region. In the subrepeat region the central part is built from a repeated tripeptide, Pro-Glu--Arg+. A similar charge distribution adjacent to prolines is found in other BR gene subrepeat regions, most pronouncedly in the BR2-encoded protein. These conserved properties of the BR gene products are relevant to the issue how the various BR gene products interact to form a supramolecular structure, the larval tube, and how functional demands influence the evolution of a eucaryotic gene family.  相似文献   

7.
Summary All known types of Balbiani ring (BR) gene consist of multiple, tandemly arranged, ca. 180 to 300-bp repeat units that can be divided into a constant region and a subrepeat region. The latter region includes short tandem subrepeats (SRs). Comparison of all available BR sequences using computer methods has enabled us (a) to define more precisely the constant and subrepeat regions, (b) to infer the evolutionary relationships among the various types of BR repeats, (c) to derive a consensus approximation of an ancestral sequence from a small segment of which the highly diverse present-day SRs may have originated, and (d) to detect an underlying substructure in the constant region, evident in the consensus but not in the present-day sequences and possibly corresponding to an original 39-bp DNA segment from which the extant, giant BR sequences may have evolved. We discuss the processes of reduplication, diversification, and homogenization within the hierarchically repetitive BR sequences as examples of how a simple DNA element may evolve into a diverse family of large, protein-coding genes.  相似文献   

8.
S T Case  J R Bower 《Gene》1983,22(1):85-93
pCtBR2-1 is a recombinant plasmid with a 750-bp insert of Chironomus tentans genomic DNA. When pCtBR2-1 was hybridized in situ to salivary gland polytene chromosomes, it hybridized exclusively to Balbiani ring 2 (BR2), a giant chromosomal puff. It was also shown that the insert contained four tandemly repeated sequences that were delineated by HinfI sites which occurred every 190 bp. The purified insert reassociated to C. tentans DNA with a C0t1/2 = 0.48 indicating that the sequence was moderately repeated within the genome. Hybridization of radioactive pCtBR2-1 to nitrocellulose blots containing partial HinfI digests of genomic DNA revealed that the 190-bp repeats were organized into one or more blocks of 11 to 12 copies in tandem. Hybridization of the recombinant plasmid to limit digests of genomic DNA also demonstrated that repeated sequences in BR2 were not homogeneous. As much as 70% of BR2 appeared to be represented by a 26-kb HhaI-resistant core, while the remaining 30% may have HhaI sites at 190-bp intervals, similar to pCtBR2-1.  相似文献   

9.
Summary Cell-free translation of salivary gland RNA or of purified Balbiani ring RNA (75S) in a reticulocyte lysate system gives rise to high molecular weight translational products (HMTP). In addition to a common size (approx. 1×106 daltons) HMTP share imunogenic determinants with the giant secretory proteins of salivary glands. This suggests that HMTP correspond to in vivo secreted proteins and thus, corroborates the notion that 75S-RNA is the messenger for these proteins. The time course of HMTP synthesis and the lack of appearance of lower molecular weight components as translational products of 75S-RNA indicate that the synthesis of HMTP (and of secretory proteins) occurs in one piece by an uninterrupted process. HMTP are regarded the largest polypeptides so far synthesized in a cell-free system.  相似文献   

10.
J Sümegi  L Wieslander  B Daneholt 《Cell》1982,30(2):579-587
One cloned cDNA sequence, pCt63, was used to characterize the repeated structure of the Balbiani ring 2 gene in Chironomus tentans. Although small in size (0.63 kb), the cDNA insert corresponds to a large portion (25 kb) of the BR2 gene (37 kb). Southern blotting experiments suggested that a large part of the BR2 gene consists of tandemly repeated units, each about 215 bp. Sequence analysis of the cDNA confirmed the repeated nature of the BR2 gene and revealed the internal structure of the repeat unit. Each such unit is composed of two regions of approximately equal length; one is highly ordered and built from about six 18 bp repeats, each consisting of a slightly diverged 9 bp duplication. The recorded hierarchic arrangement of the repetitive sequences in the BR2 gene and a specific pattern of base substitutions along the gene have enabled us to propose how a major part of the giant BR2 gene has evolved from a short primordial sequence, 110-120 bp in length.  相似文献   

11.
12.
A second gene has been discovered at a previously studied Balbiani ring in Chironomus. Northern hybridizations demonstrated that cDNA clone pCt35 originated from a salivary gland specific 6.5-kilobase (kb) RNA that was abundant, nonribosomal, and apparently poly(A)+. pCt35 had a 120-base pair (bp) insert with 1.6 copies of a 75-bp sequence that contained two open reading frames. Southern hybridizations indicated that pCt35 was homologous to at least a 4-kb block of genomic DNA organized as a hierarchy of 150- and 300-bp tandem repeats. In situ hybridization localized these sequences to Balbiani ring 1. From these results we postulated that a 6.5-kb RNA gene may have evolved by stepwise duplication and amplification of a 75-bp ancestral sequence.  相似文献   

13.
Summary The genome of the laboratory mouse contains about 35 major urinary protein (MUP) genes, many of which are clustered on chromosome 4. We have used distance and parsimony methods to estimate phylogenetic relationships between MUP genes from nucleotide sequence and restriction maps. By analyzing coding sequences we show that the genes fall into four main groups of related sequences (groups 1–4). Comparisons of restriction maps and the nucleotide sequences of hypervariable regions that lie 50 nucleotides 5 to the cap sites show that the group 1 genes and probably also the group 2 pseudogenes fall into subgroups. The most parsimonious trees are consistent with the evolution of the array of group 1 and 2 genes by mutation accompanied by a process tending toward homogenization such as unequal crossing-over or gene conversion. The phylogenetic grouping correlates with grouping according to aspects of function. The genomes of the inbred strains BALB/c and C57BL contain different MUP gene arrays that we take to be samples from the wild population of arrays.  相似文献   

14.
The homologous sequences of human or mouse SOX1, SOX4 and SOX11 , and one novel Sox gene (named Ccf-SoxN ) were identified in the genome of channel catfish Ictalurus punctatus . Identification of these genes is a potential step in understanding development regulations including sex determination in channel catfish.  相似文献   

15.
16.
17.
Winged bean Kunitz chymotrypsin inhibitor (WCI) accumulates in an organ-specific and temporally regulated manner. The protein is encoded by a multigene family that includes at least four putative inhibitor-coding genes and three pseudogenes. The structure of the WCI genes indicates that an insertion at a 5′ proximal site occurred after duplication of the ancestral WCI gene and that several gene conversion events subsequently contributed to the evolution of this gene family. Analysis of the promoter activity of the 5′ regions of the WCI genes in transgenic tobacco showed that only the 5′ regions of the WCI-3a and WCI-3b genes, which encode the major WCI protein in winged bean, promoted the organ-specific and temporally regulated expression of a reporter gene. The 5′ region of a pseudogene, the WCI-P1 gene which contains frameshift mutations, exhibited constitutive promoter activity in tobacco, an indication that the 5′ region of the WCI-P1 gene might spontaneously have acquired new regulatory sequences during evolution. Since gene conversion is a relatively frequent event and since the homology between the WCI-P1 and WCI-3a/b genes is disrupted at a 5′ proximal site by remnants of an inserted sequence, the WCI-P1 gene appears to be a possible intermediate that could be converted into a new functional gene with a distinct pattern of expression by a single gene-conversion event. Received: 17 April 1996 / Accepted: 23 October 1996  相似文献   

18.
The analysis of phenotypic change resulting from gene disruption following homologous recombination provides a powerful technique for the study of gene function. This technique has so far been difficult to apply to plants because the frequency of gene disruption following transformation with constructs containing DNA homologous to genomic sequences is low (0.01 to 0.1%). It has recently been shown that high rates of gene disruption (up to 90%) can be achieved in the moss Physcomitrella patens using genomic sequences of unknown function. We have used this system to examine the specificity of gene disruption in Physcomitrella using a member of the Cab multigene family. We have employed the previously characterised Cab gene ZLAB1 and have isolated segments of 13 other closely related members of the Cab gene family. In the 199-bp stretch sequenced, the 13 new members of the Cab family show an average of 8.5% divergence from the DNA sequence of ZLAB1. We observed 304 silent substitutions and 16 substitutions that lead to a change in the amino acid sequence of the protein. We cloned 1029 bp of the coding region of ZLAB1 (including 177 of the 199 bp with high homology to the 13 new Cab genes) into a vector containing a selectable hygromycin resistance marker, and used this construct to transform P. patens. In three of nine stable transformants tested, the construct had inserted in, and disrupted, the ZLAB1 gene. There was no discernible phenotype associated with the disruption. We have therefore shown that gene disruption is reproducible in P. patens and that the requirement for sequence homology appears to be stringent, therefore allowing the role of individual members of a gene family to be analysed in land plants for the first time. Received: 2 February 1998 / Accepted: 15 October 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号