首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of the three antibiotics U-12,241, nogalamycin, and U-20,661 on (i) deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis in KB cell cultures and cell-free systems of bacterial and mammalian origin and on (ii) oxidative phosphorylation in rat liver mitochondria were compared. Nogalamycin and U-12,241 inhibited RNA synthesis more strongly than DNA synthesis in all test systems. Antibiotic U-20,661 inhibited DNA and RNA synthesis equally in whole mammalian cells and their corresponding cell-free systems. The RNA polymerase from Escherichia coli, however, was at least 100 times more sensitive to U-20,661 than was the DNA polymerase. U-12,241 caused significant uncoupling of oxidative phosphorylation in mitochondria.  相似文献   

3.
When starved for leucine, strains of Bacillus subtilis do not complete chromosome replication to the terminus. The amount of deoxyribonucleic acid (DNA) made poststarvation is characteristic of the strain. In this study, four strains differing in their DNA response were examined for ribonucleic acid (RNA) regulation during leucine starvation. Each of the strains was judged to be stringent for RNA control based on the amount of RNA made poststarvation. Sucrose gradient profiles on RNA made with and without leucine starvation support this conclusion. Accumulation of guanosine tetraphosphate during leucine starvation showed no correlation with the amount of DNA synthesized. We concluded that modulation control of DNA synthesis during leucine starvation is independent of RNA control.  相似文献   

4.
Polysomes were extracted from Bacillus subtilis cells starved for a required amino acid. The monosome peak appeared soon after starvation; no difference in the rate of degradation was detected when the cells were starved for arginine or tryptophan in a double auxotroph. RNA production during starvation was not inhibited by actinomycin, but the molecular weight of the product made in the presence of the antibiotic was much lower. Indications that stable messenger ribonucleic acid is present for up to 90 min after amino acid starvation are also presented.  相似文献   

5.
The envA mutation in Escherichia coli K-12, which maps at 1.5 min, was previously shown to mediate sensitivity to gentian violet as well as to several antibiotics. Moreover, strains containing the envA gene were recently found to be lysed by lysozyme in the absence of ethylenediaminetetraacetate. It is here reported that the envA mutation mediates an increased uptake of gentian violet. The uptake of the dye was markedly affected by growth with different antibiotics interfering with macromolecular synthesis. Amino acid starvation of a strain containing envA with a stringent control of ribonucleic acid (RNA) synthesis resulted in a decreased uptake of gentian violet. However, no decrease in dye uptake was found during starvation in an envA transductant with a relaxed control of RNA synthesis. Inhibition of deoxyribonucleic acid (DNA) synthesis by nalidixic acid decreased the uptake of gentian violet of envA cells and, in addition, rendered the cells insensitive to the lytic action of lysozyme. Chloramphenicol treatment increased penetrability in wild-type and starved envA cells. In most instances, this effect of chloramphenicol was prevented by selectively interfering with DNA or RNA synthesis. A coordinate regulation of nucleic acid synthesis and penetrability is suggested.  相似文献   

6.
A relatively simple immunochemical procedure for estimating flagellar protein was developed. This procedure involved measuring the binding of purified, radioactively labeled, antiflagellar antibodies to bacteria. The assay was used to determine the requirements for ribonucleic acid (RNA) and protein synthesis during flagellar regeneration in Bacillus subtilis. Immediate inhibition of flagella development was observed when chloramphenical or puromycin was added to cells. This inhibition indicated the absence of a large pool of flagella precursors that could be assembled in the absence of protein synthesis. When the cells were starved for uracil or treated with actinomycin D to inhibit RNA synthesis, the ability of the cells to regenerate flagella decayed with a half-life of 5.5 min. When B. subtilis auxotrophs were starved for tryptophan, they continued to synthesize flagella, although this process was also inhibited by actinomycin D. On the basis of these results, we concluded that (i) the system involved in flagellar regeneration does not have unusual metabolic stability, (ii) regeneration requires both concomitant protein and RNA syntheses, and (iii) B. subtilis continues to synthesize messenger RNA during tryptophan starvation.  相似文献   

7.
8.
Survival and the synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein were measured during incubation of a thymine auxotroph of Escherichia coli in a series of media containing thymine concentrations below the optimal level of 2 mug/ml. The rate of increase in viable count gradually diminishes to no net growth with 0.2 mug/ml. With lower concentrations of thymine, the rate of cell death gradually increases, resulting in a typical thymineless death curve with 0.02 mug/ml. Both the rate of cell growth and the rate of cell inactivation vary linearly with the thymine concentration. Thirty minutes of incubation in media containing limiting concentrations of thymine before a shift to complete thymine starvation results in a progressive decrease in the length of the lag period preceding thymineless death. These data suggest that only one type of cellular damage occurs during the various degrees of thymine limitation. Prolonged preincubation in media containing 0.1 to 0.2 mug/ml of thymine results in an immunity to thymineless death. This immunity differs from that observed with amino acid-starved cells in its kinetics; ultraviolet irradiation of preincubated cells indicates that the cells are inactivated at the same rate as log-phase cells. These results suggest that the immunity is not associated with chromosome alignment. Thymine concentrations between 2 mug/ml and 0.2 mug/ml permit essentially the same amount of protein and RNA synthesis. The total amount of synthesis then decreases linearly to 40 to 50% of the control level with further reduction in the amount of thymine present. Protein and RNA synthesis are first affected at the same thymine concentration at which lethality is first detectable, and this correlation suggests that the synthesis of these macromolecules is involved in the mechanism of thymineless death. DNA synthesis, on the other hand, is directly dependent on the thymine concentration for levels of 0.5 mug/ml or less. There are no critical changes in DNA synthesis associated with lethality, and DNA synthesis is still occurring under conditions of thymine limitation which result in immunity. These observations suggest that DNA synthesis is not directly involved in thymineless death.  相似文献   

9.
Prevost, C. (University of California, Berkeley), and V. Moses. Action of phenethyl alcohol on the synthesis of macromolecules in Escherichia coli. J. Bacteriol. 91:1446-1452. 1966.-A kinetic study of the effects of various concentrations of phenethyl alcohol on the synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), protein, and beta-galactosidase in Escherichia coli has confirmed that RNA synthesis, rather than DNA synthesis, is first and most affected by phenethyl alcohol. The presence of inducer did not protect beta-galactosidase synthesis from inhibition by phenethyl alcohol. Little preferential inhibition of beta-galactosidase synthesis was observed; this is in contrast to the severe catabolite repression which results from partial inhibition of total protein synthesis caused by chloramphenicol or starvation for a required amino acid. We found no evidence that messenger RNA synthesis was inhibited to a greater extent than total RNA synthesis.  相似文献   

10.
The synthesis of ribosomes by a mutant of Escherichia coli   总被引:3,自引:0,他引:3       下载免费PDF全文
1. When the methionine-requiring mutant 58–161 of Escherichia coli was starved of methionine, ribonucleic acid was made in the absence of protein synthesis. 2. Most of this ribonucleic acid was similar to that found in ribosomes but was contained in particles differing from ribosomes both in sedimentation coefficient and in chromatographic behaviour on diethylaminoethylcellulose. 3. When methionine was added to a starved culture, the ribonucleic acid synthesized during starvation was almost completely undegraded as growth resumed. A transient loss of 5–10% could be largely attributed to breakdown of messenger ribonucleic acid accumulated during starvation. 4. After the addition of methionine, ribosomes were formed from the particles, and during this period preferential synthesis of ribosomal protein took place. 5. It is suggested that under these conditions the direct synthesis of ribosomes from the particles may occur.  相似文献   

11.
A mutant of Bacillus subtilis 168 (strain 168 KW), defective in its ability to concentrate K(+) from low levels in the growth medium, was used to study the role of K(+) in the development of phage 2C. Both the final burst size and the duration of the rise period depended on the K(+) concentration in the medium. During normal infection (in the presence of K(+)), host deoxyribonucleic acid (DNA) synthesis stopped. The synthesis of host messenger ribonucleic acid (RNA) continued throughout infection, albeit at a steadily decreasing rate. The synthesis of ribosomal RNA and its subsequent incorporation into mature ribosomes also proceeded. In contrast to these findings, host DNA and messenger RNA synthesis were not inhibited in cells infected in the absence of K(+). Only "early" phage messenger RNA was synthesized under these conditions of infection. Phage DNA synthesis was dependent on K(+) irrespective of the requirement for this cation in protein synthesis.  相似文献   

12.
A rapid micromethod is described for the preparation of nucleic acid-free extracts from Escherichia coli that involves precipitation with polyethylene glycol. Extracts can be prepared from growing cells in 75 min by three short, low-speed centrifugations. The extract did not inhibit added purified ribonucleic acid (RNA) polymerase, suggesting that major inhibitors of RNA synthesis had been removed. This extract should be ideal for assessing the properties of mutant RNA polymerases. The rapid chromatography of the extracts with step elution from deoxyribonucleic acid- and diethylaminoethyl-cellulose columns resulted in high yields of substantially pure RNA polymerase. We used this technique to purify 35S-labeled RNA polymerase. This system should find application for the purification of small quantities of other bacterial RNA polymerases that share the general chromatographic properties of E. coli RNA polymerase.  相似文献   

13.
Exposure of cells of Escherichia coli to mitomycin C (5 mug/ml) resulted in a marked change in the sedimentation profiles of the cell-free extracts, indicating a specific decomposition of ribosomal particles. When the extracts were prepared in the presence of 0.01 m Mg(++) and analyzed by sucrose density gradient centrifugations, the 100S fraction disappeared rapidly from the treated cells. The 70S ribosomes were also degraded, but more slowly, with a concomitant accumulation of a fraction having a sedimentation coefficient of about 50S. However, decomposition of the 70S ribosomes was preceded by an almost complete loss of the 50S ribosomal subunits, as revealed by sedimentation analyses in the presence of 10(-4)m Mg(++). Synthesis of the ribosomes in the treated cells was also suppressed, being demonstrated by a lower incorporation of uracil-2-(14)C into the ribosomal fractions. However, the change in the ribosomal profile in the treated cells apparently resulted from the decomposition of pre-existing ribosomes, rather than from the inhibition of the net synthesis of ribosomes. Sedimentation analyses and chromatography of the nucleic acids extracted from the treated cells indicated extensive but delayed degradation of the ribosomal ribonucleic acid (RNA), but not of the soluble RNA or deoxyribonucleic acid fractions. Altered structure of the ribosomes in the treated cells was also indicated by their lower melting temperature, broadened thermal profile, higher electrophoretic mobility, and extreme sensitivity to ribonuclease treatment, compared with normal ribosomes. The synthesis of messenger RNA was inhibited progressively with time in the treated cells.  相似文献   

14.
15.
Thymineless death in Bacillus megaterium   总被引:12,自引:6,他引:6  
Wachsman, J. T. (University of Illinois, Urbana), S. Kemp, and L. Hogg. Thymineless death in Bacillus megaterium. J. Bacteriol. 87:1079-1086. 1964.-Strain KM:T(-), a thymine auxotroph of Bacillus megaterium strain KM, rapidly loses the ability to multiply when incubated in the absence of thymine, on an otherwise sufficient medium. At 37 C, there is a lag of approximately 60 min, prior to the onset of exponential death (decrease of 1 decade per 50 min). The extent of the decrease in viable count varies from 4 to 5 decades after 5 hr of starvation. The cells die more slowly at 30 C (decrease of 1 decade per 120 min) after a lag of approximately 90 min. Thymine starvation permits substantial net ribonucleic acid (RNA) and protein synthesis, but only slight deoxyribonucleic acid synthesis. In contrast with the changes occurring at 30 C, thymineless death at 37 C is eventually accompanied by a rapid hydrolysis of RNA and by cell lysis. Chloramphenicol inhibits thymineless death at 37 C. Strain T(-)R(1), a derivative of strain KM:T(-), undergoes a very low rate of thymineless death at 37 C (decrease of 1 decade per 240 min). Neither hydrolysis of RNA nor cell lysis occurs during 8 hr of thymine starvation. Strain KM:T(-)H(-) (doubly auxotrophic for thymidine and histidine) requires histidine for maximal thymineless death at 37 C. Preincubation of this strain on the basal medium supplemented with thymidine alone enables the population to become increasingly immune to subsequent thymineless death.  相似文献   

16.
Template requirement of maize RNA polymerase   总被引:3,自引:2,他引:1       下载免费PDF全文
Stout ER  Mans RJ 《Plant physiology》1968,43(3):405-410
Maize RNA polymerase utilizes heated deoxyribonucleic acid more effectively than native deoxyribonucleic acid as a template for ribonucleic acid synthesis. A ribonucleic acid-deoxyribonucleic acid hybrid accumulates in the presence of heated deoxyribonucleic acid. The amount of product formed with either native or heat-denatured deoxyribonucleic acid does not exceed the amount of deoxyribonucleic acid added as template.  相似文献   

17.
Amino acid control of ribonucleic acid (RNA) synthesis in bacteria is known to be governed genetically by the rel locus. We investigated whether the rel gene of the host would also exert its effect on the regulation of phage-specific RNA synthesis in T4 phage-infected Escherichia coli cells. Since T-even phage infection completely shuts off host macromolecular synthesis, phage RNA synthesis could be followed specifically by the cumulative incorporation of radioactivity from labeled precursors into RNA of infected cells. Labeled uracil was shown to accumulate in phage-specific RNA for 30 to 35 min after infection, a phenomenon which probably reflects an expansion of the labile phage-RNA pool. Amino acid starvation was effected by the use of auxotrophic bacterial strains or thienylalanine. The latter substance is an amino acid analogue which induces a chemical auxotrophy by inhibiting the biosynthesis of phenylalanine, tyrosine, and tryptophan. Phage RNA synthesis was strictly dependent on the presence of amino acids, whereas phage deoxyribonucleic acid synthesis was not. By the use of several pairs of bacterial strains which were isogenic except for the rel gene, it was demonstrated that amino acid dependence was related to the allelic state of this gene. If the rel gene was mutated, amino acid starvation did not restrict phage RNA synthesis.  相似文献   

18.
19.
20.
Cells of Arthrobacter atrocyaneus and A. crystallopoietes, harvested during their exponential phase, were starved in 0.03 M phosphate buffer (pH 7.0) for 28 days. During this time, the cells maintained 90 to 100% viability. Experimental results were similar for both organisms. Total cellular deoxyribonucleic acid was maintained. Measurable degradation rates for deoxyribonucleic acid as determined by radioisotope techniques were not observed, and only during the initial hours of starvation could a synthetic rate be determined. Total ribonucleic acid levels remained stable for the first 24 h of starvation, after which slow, continuous loss of orcinol-reactive material occurred. Synthetic and degradative rates of ribonucleic acid, as determined by radioisotope techniques, dropped quickly at the onset of starvation. Constant basal rates were attained after 24 h. In A. atrocyaneus, total cell protein was degraded continuously from the onset of starvation. In A. crystallopoietes, total cell protein remained stable for the first 24 h, after which slow continuous loss occurred. After 28 days, the total protein per cell was similar for both organisms. In the first week, amino acid pools stabilized at about 50% of the values characteristic of growth. Rates of degradation of protein decreased rapidly for the first 24 h for both organisms, but leveled to a constant basal rate thereafter. Rates of new protein synthesis dropped during the first 24 h and by 48 h achieved a constant basal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号