首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosome variant surface glycoprotein genes expressed early in infection   总被引:11,自引:0,他引:11  
We have studied further the genes for trypanosomal variant surface glycoproteins expressed during a chronic infection of rabbits with Trypanosoma brucei, strain 427. We show that there are three closely related chromosomal-internal isogenes for VSG 121; expression of one of these genes is accompanied by the duplicate transposition of the gene to a telomeric expression site, also used by other chromosome-internal VSG genes. The 3' end of the 121 gene is replaced during transposition with another sequence, also found in the VSG mRNAs of two other variants. We infer that an incoming VSG gene duplicate recombines with the resident gene in the expression site and may exchange ends in this process. The extra expression-linked copy of the 121 gene is lost when another gene enters the expression site. However, when the telomeric VSG gene 221 is activated without duplication the extra 121 gene copy is inactivated without detectable alterations in or around the gene. We have also analysed the VSG genes expressed very early when trypanosomes are introduced into rats or tissue culture. The five genes identified in 24 independent switching events were all found to be telomeric genes and we calculate that the telomeric 1.8 gene has a 50% chance of being activated in this trypanosome strain when the trypanosome switches the VSG that is synthesized. We argue that the preferential expression of telomeric VSG genes is due to two factors: first, some telomeric genes reside in an inactive expression site, that can be reactivated; second, telomeric genes can enter an active expression site by a duplicative telomere conversion and this process occurs more frequently than the duplicative transposition of chromosome-internal genes to an expression site.  相似文献   

2.
Trypanosomes with a coat of variant surface glycoprotein (VSG) 118, consistently appear around day 20 when a rabbit is infected with Trypanosoma brucei strain 427. There is a single chromosome-internal gene for VSG 118 and this is activated by duplicative transposition to a telomeric expression site. We show here that the expression-linked extra copy of VSG gene 118 in a day 18 population of a chronic infection is heterogeneous, and we infer that the population is not monoclonal but is the result of multiple independent activations of the 118 gene. We show that the heterogeneity of expression-linked extra copies is also present in other trypanosome populations expressing chromosome-internal VSG genes. We present a model for the timing of VSG gene activation during chronic infection that emphasizes two features: the relative activation and inactivation frequencies of different expression sites, and the degree of homology of the sequences flanking VSG genes with expression sites.  相似文献   

3.
4.
5.
Trypanosoma brucei contains a repertoire of more than 100 different genes for Variant Surface Glycoproteins (VSGs). A small and strain-specific fraction of these genes is expressed in the salivary glands of the tsetse fly (M-genes), giving rise to metacyclic Variable Antigen Types (M-VATs). Antibodies produced in a chronic trypanosome infection initiated by syringe inoculation of bloodstream forms into mammals (i.e. against B-VATs), will react with most of the M-VATs suggesting that these B-VATs express VSG genes that are similar or identical to M-genes. We have cloned DNA complementary to the VSG mRNA of four of such B-VATs and used this to characterize the corresponding VSG genes. In three of the four VATs we find a single VSG gene hybridizing with the cDNA probe and we provide supporting evidence that this gene is expressed as an M-gene. In the bloodstream repertoire these genes appear to be activated by duplicative translocation to another telomere. In all four variants the putative M-genes are telomeric and in the three cases where the location of the genes on chromosome-sized DNA molecules could be determined, the genes were located in large DNA, whereas the majority of the telomeric VSG genes are in chromosomes less than 1000 kb. Our results are best explained by models for M-gene activation involving telomeric expression sites for these genes which are separate from those used by bloodstream forms. The implications of these results for vaccination are discussed.  相似文献   

6.
G A Buck  C Jacquemot  T Baltz  H Eisen 《Gene》1984,32(3):329-336
Variable surface glycoprotein (VSG) genes in African trypanosomes are often activated by the duplicative transposition of a silent basic copy (BC) gene into an unlinked telomerically located expression site, producing an active expression-linked copy (ELC) of that gene. However, some BC genes that are already linked to a telomere are activated without apparent duplication or transposition. We have recently shown that an active VSG ELC can be inactivated in situ, apparently without rearrangement. To explain these observations it has been suggested that VSG genes that are associated with chromosome telomeres are activated by chromosome end exchanges that occur at a considerable distance upstream from the genes themselves and place them cis to a unique VSG expression element. In an attempt to test this model we derived five VSG-1 expressing variants from BoTat-2, a VSG-2 expressing variant of Trypanosoma equiperdum which carries an inactive residual VSG-1 ELC (R-ELC) as well as the active VSG-2 ELC near unlinked chromosome telomeres. We examined the fates of the VSG-2 ELC and the VSG-1 R-ELC in these variants. All five had maintained the VSG-1 R-ELC; three in a reactivated form and two in an inactive state. The latter two variants carried new, active VSG-1 ELCs: one in the site that had previously contained the VSG-2 ELC and one in a previously unidentified site. The VSG-2 ELC was lost in all five of the variants. The results are not consistent with the simple chromosome end exchange model, which predicts that the VSG-2 ELC would be inactivated but not deleted when the VSG-1 R-ELC was reactivated.  相似文献   

7.
8.
S Longacre  H Eisen 《The EMBO journal》1986,5(5):1057-1063
A rapid technique involving the S1 nuclease resistance of RNA:DNA duplexes has been used to screen four Trypanosoma equiperdum variant surface glycoprotein (VSG) genes for evidence of hybrid gene structure in their transcribed regions. The results suggest that VSGs appearing early in a chronic infection each have a complete co-linear basic copy (BC) of their expressed gene while VSGs appearing later in infection are particularly associated with BC genes which are recombined before being expressed. The intensities of the S1-protected bands from hybrid VSGs indicate that the basic and expression linked copies are present in equivalent gene dosages. In addition, studies are presented on the expression of two additional VSG genes in T. equiperdum, VSG 4 and VSG 78, which (i) show that the basic copies are not located on telomeres even though one (VSG 4) is expressed early in infection and (ii) emphasize the role of a predominant expression site in T. equiperdum while nevertheless confirming the presence of multiple expression sites.  相似文献   

9.
10.
11.
12.
Intrachromosomal variant surface glycoprotein (VSG) genes in Trypanosoma brucei are expressed by a mechanism involving gene conversion. The 3'boundary of gene conversion is usually within the last 130 bp of the VSG gene, a region of partially conserved sequences. We report here the loss of the predominant telomeric A VSG gene in the cloned variant antigenic type (VAT) 5A3, leaving only an intrachromosomal A VSG gene (the A-B gene). The nucleotide sequence of the A-B VSG gene reveals that it lacks the normal VSG 3' sequence. Surprisingly, we find cells expressing this A-B VSG gene in relapse populations arising from VAT 5A3. Since the A VSG mRNAs from these cells have a normal 3' sequence, the incomplete A-B VSG gene must be expressed via a partial gene conversion that supplies the functional 3'end. Although the A-B VSG gene is no longer predominant like the telomeric A VSG gene, it is still expressed more frequently than other intrachromosomal VSG genes, suggesting that factors other than a telomeric location determine whether a VSG gene is expressed early in a serodeme.  相似文献   

13.
VSG gene 118 is transcribed from a cotransposed pol I-like promoter   总被引:31,自引:0,他引:31  
C Shea  M G Lee  L H Van der Ploeg 《Cell》1987,50(4):603-612
  相似文献   

14.
D F Cully  H S Ip  G A Cross 《Cell》1985,42(1):173-182
Trypanosoma brucei variant surface glycoprotein (VSG) genes are activated either by duplicative (DA) transposition of the gene to a pre-activated expression site or by nonduplicative (NDA) activation of a previously silent telomeric gene. We have obtained a recombinant clone spanning the 5' barren region of the expression linked copy of the duplicated VSG gene 117a. By DNA sequence and hybridization analyses we have identified a pleomorphic family of 14-25 non-VSG genes that lie upstream of both DA and NDA VSG expression sites. These expression site associated genes (ESAGs) encode 1.2 kb poly(A)+ mRNAs that are specifically transcribed from the active VSG expression telomere in mammalian bloodstream stages of T. brucei but, in common with VSG genes, are not transcribed in procyclic culture forms. cDNA and genomic sequences predict open reading frames that are conserved in the two ESAGs examined.  相似文献   

15.
We have observed the loss of an inactive telomeric variant surface glycoprotein (VSG) gene that is located on a minichromosome in Trypanosoma brucei. If this is due to gene conversion, it is the third "silent" gene conversion (i.e., one that does not produce an antigenic switch) detected in 19 antigenic switches of the IsTaR 1 serodeme. This is surprisingly frequent since the immune response cannot select against the inactive gene. We estimate that 10(-1) to 10(-3) telomeric VSG gene conversions occur per generation, which is at least 100 times more frequent than antigenic switching. Since all three "silent" gene conversions involved an IsTat 5 VSG gene, the frequency may vary among telomeric VSG genes. However, the high gene conversion frequency for the 5 VSG gene does not ensure a higher antigenic switch frequency than other telomeric VSG genes for which we have probes. These results suggest that gene conversion rapidly alters the repertoire of telomeric VSG genes, possibly including those on minichromosomes, producing a continual variation in the VSG genes that are more likely to be expressed.  相似文献   

16.
17.
In the mammalian bloodstream, African trypanosomes express variant surface glycoprotein (VSG) genes from a family of long and complex telomeric expression sites. VSG switching generally occurs by the duplication of different VSG genes into these sites by gene conversion involving a series of 70 base pair (70bp) repeats in the 5' flank. In contrast, when VSG is first synthesised by trypanosomes in the tsetse fly at the metacyclic stage, a separate set of telomeric expression sites is activated. These latter telomeres appear not to act as recipients in gene conversion. We have found that the structure of two such expression sites is simple, with very short 70bp repeat regions and very little other sequence in common with bloodstream expression sites. However, the two telomeres readily act as donors in VSG gene conversion in the bloodstream and we show for one a consistent association of the conversion 5' end point with the short 70bp repeat region. These findings help explain why a very predictable set of VSGs is expressed in the tsetse fly and have implications for VSG gene conversion mechanisms.  相似文献   

18.
C W Roth  S Longacre  A Raibaud  T Baltz    H Eisen 《The EMBO journal》1986,5(5):1065-1070
The expression of Trypanosoma equiperdum variant surface protein (VSG) 78 is accomplished by the duplicative transposition of silent basic copy (BC) genes into a telomer-linked expression site to form an expression-linked copy (ELC). In two independent isolates expressing VSG 78, the ELC is a composite gene. The analysis of VSG 78 cDNA clones from these two Bo Tat 78 isolates and the respective BC genes revealed that both ELCs were constructed from the same three BC genes, a 3' BC which donated the last 255 bp of each ELC and two closely related 5' BCs. Although sequences of both 5' BC genes were found in each ELC, the junction with the 3' BC was provided by the same 5' BC in both cases. This 5' BC is an incomplete gene with insufficient open reading frame to code for a complete VSG and thus can only be used when joined to a competent 3' end. Furthermore, both 5' BC genes lack a conserved 14 nucleotide sequence found on all VSG mRNAs. These results support a model in which composite gene formation plays a role in the determination of the order of VSG expression. They also illustrate similarities between immunoglobulin gene and VSG gene construction.  相似文献   

19.
20.
Antigenic variation in African trypanosomes displays a degree of order that is usually described as 'semi-predictable' but which has not been analysed in statistical detail. It has been proposed that, during switching, the variable antigen type (VAT) being inactivated can influence which VAT is subsequently activated. Antigenic variation proceeds by the differential activation of members of the large archive of distinct variable surface glycoprotein (VSG) genes. The most popular model for ordered expression of VATs invokes differential activation probabilities for individual VSG genes, dictated in part by which of the four types of genetic locus they occupy. We have shown, in pilot experiments in cattle, correlation between the timing of appearance of VSG-specific mRNA and of lytic antibodies corresponding to seven VSGs encoded by single-copy genes. We have then determined the times of appearance of VAT-specific antibodies, as a measure of appearance of the VATs, in a statistically significant number of mouse infections (n=22). There is a surprisingly high degree of order in temporal appearance of the VATs, indicating that antigenic variation proceeds through order in the probability of activation of each VAT. In addition, for the few examples of each available, the locus type inhabited by the silent 'donor' VSG plays a significant role in determination of order. We have analysed in detail previously published data on VATs appearing in first relapse peaks, and find that the variant being switched off does not influence which one is being switched on. This differs from what has been reported for Plasmodium falciparum var antigenic variation. All these features of trypanosome antigenic variation can be explained by a one-step model in which, following an initial deactivation event, the switch process and the imposition of order early in infection arise from the inherent activation probabilities of the specific VSG being switched on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号