首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Amyloid-β peptide (Aβ), a putatively causative agent of Alzheimer’s disease (AD), is proteolytically derived from β-amyloid precursor protein (APP). Here we describe cellular assays to detect the activity of the key protease β-site of APP cleaving enzyme 1 (BACE1) based on an artificial reporter construct containing the BACE1 cleavage site of APP. These methods allow identification of inhibitors and indirect modulators of BACE1. In primary neuronal cultures transfected with human APP constructs (huAPP), Aβ production was modified by BACE1 inhibitors similarly to the production of endogenous murine Aβ in wild-type cells and to that of different transgenic neurons. To further improve the assay, we substituted the extracellular domain of APP by secreted alkaline phosphatase (SEAP). SEAP was easily quantified in the cell culture supernatants after cleavage of SEAP-APP by BACE1 or α-secretases. To render the assay specific for BACE1, the α-secretase cleavage site of SEAP-APP was eliminated either by site-directed mutagenesis or by substituting the transmembrane part of APP by the membrane domain of the erythropoietin receptor (EpoR). The pharmacology of these constructs was characterized in detail in HEK293 cells (human embryonic kidney cell line), and the SEAP-APP-EpoR construct was also introduced into primary murine neurons and there allowed specific measurement of BACE1 activity.  相似文献   

2.
3.
4.
5.
β-galactosidases (GUS, EC 3.2.1.23) are character- ized by their ability to hydrolyze terminal, non-re- ducing β-D-galactosyl residues from β-D-galactosides and are widely distributed in microbes, plants and animals. To date, the primary structures of …  相似文献   

6.
7.
8.
Agrawal P  Verma D  Daniell H 《PloS one》2011,6(12):e29302
Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase. Our results demonstrate that chloroplast-derived mannanase is an important component of enzymatic cocktail for woody biomass hydrolysis and should provide a cost-effective solution for its diverse applications in the biofuel, paper, oil, pharmaceutical, coffee and detergent industries.  相似文献   

9.
Hydrogen sulfide (H(2)S) is now identified as a new neuromodulator. Increasing evidence suggest that H(2)S may play an important role in the progression of Alzheimer's disease (AD). The aim of the present study is to investigate the effects of H(2)S on beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) expression and amyloid beta (Aβ) secretion in PC12 cells. The levels of BACE-1 mRNA were measured by quantitative polymerase chain reaction analysis. BACE-1 protein levels were assessed by Western blot. Cellular culture medium levels of Aβ1-42 were analyzed by ELISA. We found that sodium hydrosulfide (NaHS), a H(2)S donor, decreased BACE-1 mRNA and protein levels and Aβ1-42 release. Furthermore, NaHS promoted the phosphorylation of Akt and ERK but not JNK or p38 MAPK. However, the effects of NaHS on BACE-1 expression and Aβ1-42 secretion were abolished by inhibitors of phosphatidylinositol 3-kinase (PI3-K), but not of mitogen-activated protein kinase kinases (MEK). Our data indicate that H(2)S reduces BACE-1 expression in PC12 cells via activation of PI3-K/Akt signaling pathways. H(2)S releasing drugs may have therapeutic potential in AD patients.  相似文献   

10.
11.
12.
13.
Ola Philipson 《FEBS letters》2009,583(18):3021-1309
Intraneuronal punctate immunostaining in Alzheimer’s disease brain and amyloid-β precursor protein (APP) transgenic mice has been suggested to represent Aβ, but this is somewhat controversial. Here we show that both biochemical Aβ levels and intraneuronal immunostaining are reduced in APP transgenic mice when γ-secretase is inhibited. Moreover, BACE-1 deficient APP transgenic mice show neither Aβ production nor intraneuronal immunostaining. Our findings suggest that the punctate immunostaining with APP antibodies is due to Aβ that has accumulated inside neurons. Similar type of intraneuronal Aβ accumulation, which precedes senile plaque formation, may link Aβ to tauopathy and neurodegeneration in Alzheimer’s disease pathogenesis.  相似文献   

14.
Kim  Y.K.  Chung  B.H.  Yoon  S.  Lee  K.-K.  L&#;nnerdal  B.  Yu  D.-Y. 《Biotechnology Techniques》1997,11(9):675-678
Human s1-casein was expressed efficiently in Escherichia coli. The overproduced recombinant human a s1-casein was about 25% of the total cell protein. Two different vectors were constructed to express Met-s1-casein and Met-s1-casein with a His-affinity tag at the C-terminus. Recombinant Met-s1-casein with a His-affinity tag was purified to homogeneity using Ni-nitrilotriacetic acid resin. N-terminal sequence of the first 10 amino acid residues of this purified protein was identical to that of mature human s1-casein with an extra methionine residue at the N-terminus.  相似文献   

15.
We produced transgenic mice carrying the native sheep -lactoglobulin (BLG) or fusion genes composed of the BLG promoter and human serum albumin (HSA) minigenes. BLG was expressed exclusively in the mammary glands of the virgin and lactating transgenic mice evaluated. In contrast, transgenic females carrying the BLG/HSA fusion constructs also expressed the HSA RNA ectopically in skeletal muscle, kidney, brain, spleen, salivary gland and skin. Ectopic expression of HSA RNA was detected only in strains that express the transgene in the mammary gland. There was no obvious correlation between the level of the HSA RNA expressed in the mammary gland and that found ectopically. In three transgenic strains analysed, the expression of HSA RNA in kidney and skeletal muscle increased during pregnancy and lactation, whereas in the brain HSA expression decreased during lactation in one of the strains. HSA protein was synthesized in skeletal muscle and skin of strain #23 and its level was higher in lactating mice compared with virgin mice. Expression of HSA was also analysed in males and was found to be more stringently controlled than in females of the same strains.In situ hybridization analyses localized the expressed transgene in the skin, kidney, brain and salivary glands of various transgenic strains. Distinct strain-specific and cell-type specific HSA expression patterns were observed in the skin. This is in contrast to the exclusive expression of the HSA transgene in epithelial cells surrounding the alveoli of the mammary gland. Taken together, these results suggest that the absence of sufficient mammary-specific regulatory elements in the BLG promoter sequences and/or the juxtaposition of the BLG promoter with the HSA coding sequences leads to novel tissue- and cell-specific expression in ectopic tissues of transgenic mice.  相似文献   

16.
17.
18.
Teng C  Jia H  Yan Q  Zhou P  Jiang Z 《Bioresource technology》2011,102(2):1822-1830
A novel β-xylosidase gene (designated as PtXyl43) from thermophilic fungus Paecilomycesthermophila was cloned and extracellularly expressed in Escherichia coli. PtXyl43 belonging to glycoside hydrolase (GH) family 43 has an open reading frame of 1017 bp, encoding 338 amino acids without a predicted signal peptide. No introns were found by comparison of the PtXyl43 genomic DNA and cDNA sequences. The recombinant β-xylosidase (PtXyl43) was secreted into the culture medium in E. coli with a yield of 98.0 U mL(-1) in shake-flask cultures. PtXyl43 was purified 1.2-fold to homogeneity with a recovery yield of 61.5% from the cell-free culture supernatant. It appeared as a single protein band on SDS-PAGE with a molecular mass of approx 52.3 kDa. The enzyme exhibited an optimal activity at 55 °C and pH 7.0, respectively. This is the first report on the cloning and expression of a GH family 43 β-xylosidase gene from thermophilic fungi.  相似文献   

19.

The β-glucosidase, which hydrolyzes the β(1–4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of β-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including β-glucosidase because of the potential low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon that can grow optimally at high temperature, around 80 °C, and pH 2–4. We overexpressed the β-glucosidase gene from S. solfataricus in transgenic tobacco via Agrobacteria-mediated transformation. Three transgenic tobacco lines with β-glucosidase gene expression driven by the rbcS promoter were obtained, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles up to 1%, 0.6% and 0.3% of total soluble protein, respectively. By stacking the transgenes via crossing distinct transgenic events, the level of β-glucosidase in plants could further increase. The plant-expressed β-glucosidase had optimal activity at 80 °C and pH 5–6. In addition, the plant-expressed β-glucosidase showed high thermostability; on heat pre-treatment at 80 °C for 2 h, approximately 70% residual activity remained. Furthermore, wind-dried leaf tissues of transgenic plants showed good stability in short-term storage at room temperature, with β-glucosidase activity of about 80% still remaining after 1 week of storage as compared with fresh leaf. Furthermore, we demonstrated the possibility of using the archaebacterial β-glucosidase gene as a reporter in plants based on alternative β-galactosidase activity.

  相似文献   

20.
Liver -glucuronidase is structurally altered in inbred strain PAC so that a peptide subunit with a more basic isoelectric point, GUS-SN, is produced. This allele of -glucuronidase was transferred to strain C57BL/6J by 12 backcross matings to form the congenic line B6 · PAC-Gus n. Liver -glucuronidase activity was halved in males of the congenic strain compared to normal males. The lowered activity was specifically accounted for by a decrease in the lysosomal component. There was no alteration in the concentration of microsomal activity. This alteration in the subcellular distribution of -glucuronidase in Gus n/Gus n mice was confirmed by two independent gel electrophoretic systems which separate microsomal and lysosomal components. -Glucuronidase activity was likewise approximately halved in mutant spleen, lung, and brain, organs which contain exclusively or predominantly lysosomal -glucuronidase. The loss of liver lysosomal -glucuronidase activity was shown by immunotitration to be due to a decrease in the number of -glucuronidase molecules in lysosomes of the congenic strain. The Gus n structural alteration likely causes the lowered lysosomal -glucuronidase activity since the two traits remain in congenic animals. Heterozygous Gus n/Gus b animals had intermediate levels of liver -glucuronidase. Also, the effect was specific, in that three other lysosomal enzymes were not reproducibly lower in Gus n/Gus n mice. Gus n is, therefore, an unusual example of a mutation which causes a change in the subcellular distribution of a two-site enzyme.This work was supported by National Institutes of Health Grants GM-33559 and GM-33160 and National Science Foundation Grant PCM-8215808.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号