首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic analysis established that Aitaiyin3, a dwarf rice variety derived from a semidwarf cultivar Taiyin1, carries two recessive semidwarf genes. By using simple sequence repeat (SSR) markers, we mapped the two semidwarf genes, sd-1 and sd-t2 on chromosomes 1 and 4, respectively. Sd-t2 was thus named because the semidrawf gene sd-t has already been identified from Aitaiyin 2 whose origin could be traced back to Taiyin1. The result of the molecular mapping of sd-1 gene revealed it is linked to four SSR markers found on chromosome 1. These markers are: RM297, RM302, RM212, and OSR3 spaced at 4.7 cM, 0 cM, 0.8cM and 0 cM, respectively. Sd-t2 was found to be located on chromosome 4 using five SSR markers: two markers, SSR332 and RM1305 located proximal to sd-t2 are spaced 11.6 cM, 3.8 cM, respectively, while the three distally located primers, RM5633, RM307, and RM401 are separated by distances of 0.4 cM, 0.0 cM, and 0.4 cM, respectively. __________ Translated from Acta Genetica Sinica, 2005, 32 (2) [译自: 遗传学报, 2005,32(2)]  相似文献   

2.
矮泰引-3中半矮秆基因的分子定位   总被引:5,自引:1,他引:5  
矮泰引-3的矮生性状受两对独立遗传的半矮秆基因控制,利用SSR标记将这两个矮秆基因分别定位到第1和第4染色体上。等位性测交的结果表明,位于第1染色体上的矮秆基因与sd1是等位的,所以仍然称其为sd1;而位于第4染色体上的矮秆基因是一个新基因,暂命名为sdt2。利用SSR标记将sd1定位于RM297、RM302和RM212的同一侧,而与OSR3共分离,它们之间的位置关系可能是RM297-RM302-RM212-OSR3-sd1,遗传距离分别为4.7cM、0cM、0.8cM和0cM,这与sd1在第1染色体长臂上的确切位置是基本一致的。利用已有的SSR标记和拓展的SSR标记将sdt2定位于SSR332、RM1305和RM5633、RM307、RM401之间,它们的排列位置可能是SSR332-RM1305-sdt2-RM5633-RM307-RM401,它们之间的遗传距离分别为11.6cM、3.8cM、0.4cM、0cM和0.4cM。  相似文献   

3.
4.
By using differential display PCR (DD-PCR) technique, two salt-inducible and one salt-repressed cDNA fragments were isolated from rice. The three cDNA fragments were characterized respectively as partial sequence of rice S-adenosylmethionine decarboxylase (SAMDC) gene, a new member of translation elongation factor 1A gene (namedREF1 A), and a novel gene whose function is unknown (namedSRG1). The full-length cDNA of SAMDC gene (namedSAMDC1) was further isolated by RT-PCR approach and the deduced polypeptide was found to be homologous to SAMDC proteins of other plants, yeast and buman. Northern hybridization revealed that expression of SAMDCl and REFlA was induced, while SRGl was dramatically repressed, by salinity stress. Southern blot analysis demonstrated that SAMDCl and SRGl were present as a single copy gene in rice genome, whereas riceREF1 A gene was organized as a gene family. TheREF1 A,SAMDC1, andSRG1 genes were located on chromosome 3,4, and 6 respectively by RFLP mapping approach using ZYQ8/JX17 DH population and RFLP linkage maps. Project supported by the National “863” High-Technology Program.  相似文献   

5.
水稻半矮秆基因sd-t的染色体定位研究   总被引:1,自引:0,他引:1  
以籼型标志基因系和IR36三体为工具材料,通过杂交研究了籼稻矮秆材料矮泰引-2所携半矮秆基因Sd-t在染色体上的位置。结果表明,半矮秆基因Sd-t与标志基因系019所携紫果皮基因Prp-b、标志基因系B30所携无叶舌基因1g、标志基因系027所携灰白壳基因Wh表现连锁,sd-t与Prp-b之间的交换值为2.85%±0.52%,sd-t与lg之间的交换值为27.90%±3.81%,sd-t与Wh之间的交换值为38.62%±2.99%。由于Prp-b、lg、Wh基因均位于第4染色体上,因而推定sd-t基因位于第4染色体上,其排列位置可能是Prp-b-sd-t-lg-Wh。  相似文献   

6.
Crop productivity on acid soil is restricted by multiple abiotic stress factors. Aluminum (Al) tolerance seems to be a key to productivity on soil with a pH below 5.0, but other factors such as Mn toxicity and the deficiency of P, Ca and Mg also play a role. The development of Al-tolerant genotypes of rice is an urgent necessity for improving crop productivity in developing countries. Inhibition of root growth is a primary and early symptom of Al toxicity. The present study was conducted to identify genetic factors controlling the aluminum tolerance of rice. Several parameters related to Al tolerance, most importantly the relative root growth under Al stress versus non-stress conditions, were scored in 188 F3 selfed families from a cross between an Al-tolerant Vietnamese local variety, Chiembau, and an Al-susceptible improved variety, Omon269–65. The two varieties are both Oryza sativa ssp. indica, but showed a relatively high level of DNA polymorphism, permitting the assembly of an RFLP map consisting of 164 loci spanning 1,715.8 cM, and covering most of the rice genome. A total of nine different genomic regions on eight chromosomes have been implicated in the genetic control of root and shoot growth under aluminum stress. By far the greatest effects on aluminum tolerance were associated with the region near WG110 on chromosome 1. This region does not seem to correspond to most of the genes that have been mapped for aluminum tolerance in other species, nor do they correspond closely to one another. Most results, both from physiological studies and from molecular mapping studies, tend to suggest that aluminum tolerance is a complex multi-genic trait. The identification of DNA markers (such as WG110) that are diagnostic for aluminum tolerance in particular gene pools provides an important starting point for transferring and pyramiding genes that may contribute to the sustainable improvement of crop productivity in aluminum-rich soils. The isolation of genes responsible for aluminum tolerance is likely to be necessary to gain a comprehensive understanding of this complex trait. Received: 29 March 2000 / Accepted: 16 August 2000  相似文献   

7.
To understand the development of rice leaf blades,we identified a new rolled-leaf mutant,w32,from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene,bulked segregant analysis was carried out using mutant and wild-type DNA pools ...  相似文献   

8.
A novel zebra mutant, zebra-15, derived from the restorer line JinhuilO (Oryza sativa L. ssp. indica) treated by EMS, displayed a distinctive zebra leaf from seedling stage to jointing stage. Its chlorophyll content decreased (55.4%) and the ratio of Chla/Chlb increased (90.2%) significantly in the yellow part of the zebra-15, compared with the wild type. Net photosynthetic rate and fluorescence kinetic parameters showed that the decrease of chlorophyll content significantly influenced the photosynthetic efficiency of the mutant. Genetic analysis of F2 segregation populations derived from the cross of XinonglA and zebra-15 indicated that the zebra leaf trait is controlled by a single recessive nuclear gene. Ninety-eight out of four hundred and eighty pairs of SSR markers showed the diversity between the XinonglA and the zebra-15, their F2 population was then used for gene mapping. Zebra-15 (Z-15) gene was primarily restricted on the short arm of chromosome 5 by 150 F2 recessive individuals, 19.6 cM from marker RM3322 and 6.0 cM from marker RM6082. Thirty-six SSR markers were newly designed in the restricted location, and the Z-15 was finally located between markers nSSR516 and nSSR502 with the physical region 258 kb by using 1,054 F2 recessive individuals.  相似文献   

9.
水稻微卫星标记的发展和应用   总被引:4,自引:0,他引:4  
李文涛  张桂权 《生命科学》2000,12(5):234-236,220
微卫星又称简单序列重复。它是由几个核苷酸(一般2~4个)为重复单位组成的串联重复序列。相同座位上的重复序列由于重复次数的不同而造成序列长度的多态性。微卫星标记是一种共显性标记,具有等位基因丰富、检测技术简单等优点。微卫星标记在基因组作图、品种鉴定、种质保存、分子标记辅助选择等方面有着广泛的应用。目前水稻中已发展了300多个微卫星标记。  相似文献   

10.
To identify salt stress-responsive genes, we constructed a cDNA library with the salt-tolerant rice cultivar, Lansheng. About 15000 plasmids were extracted and dotted on filters with Biomeck 2000 HDRT system or by hand. Thirty genes were identified to display altered expression levels responding to 150 mmol/L NaCl. Among them eighteen genes were up-regulated and the remainders down-regulated. Twenty-seven genes have their homologous genes in Gen-Bank Databases. The expression of twelve genes was studied by Northern analysis. Based on the functions, these genes can be classified into five categories, including photosynthesis-related gene, transport-related gene, metabolism-related gene, stress- or resistance-related gene and the others with various functions. The results showed that salt stress influenced many aspects of rice growth. Some of these genes may play important roles in plant salt tolerance.  相似文献   

11.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

12.
水稻耐亚铁毒QTLs的定位   总被引:6,自引:0,他引:6  
万建林  翟虎渠  万建民 《遗传学报》2005,32(11):1156-1166
亚铁毒是潜育性水稻土中限制水稻产量的主要因子。利用龙杂8503/IR64的F2和等价的F3群体,在营养液中培养来定位耐亚铁毒的QTLs。通过构建101SSR标记的遗传连锁图谱来确定耐亚铁毒QTLs的位置和特性。借助叶片棕色斑点指数、株高和最大根长3个性状,利用营养液在水稻苗期来评价F2单株、F3群体和亲本龙杂8503、IR64,共检测到叶片棕色斑点指数、株高和最大根长的QTLs20个,分布在水稻的10条染色体上,表明这些性状受多基因控制。控制叶片棕色斑点指数的QTLs分别定位在第1染色体的RM315-RM212、第2染色体的RM6-RM240和第4染色体的RM252-RM451之间。与前人的研究结果比较发现:1)位于第4染色体RM252-RM451之间的控制叶片棕色斑点指数的QTL与水稻功能图谱上控制叶绿素含量减少的QTL的位置一致。另一个位于第1染色体的RM315-RM212之间的控制叶片棕色斑点指数的QTL与水稻功能图谱上位于C178-R2635之间控制叶绿素含量的QTL连锁。2)位于第2染色体RM6-RM240之间的第3个控制叶片棕色斑点指数的QTL与位于RZ58-CD0686的控制钾吸收的QTL连锁。  相似文献   

13.
Candidate genes are sequenced genes of known biological action involved in the development or physiology of a trait. Twenty-one putative candidate genes were designed after an exhaustive search in the public databases along with an elaborate literature survey for candidate gene products and/or regulatory sequences associated with enhanced drought resistance. The downloaded sequences were then used to design primers considering the flanking sequences as well. Polymerase chain reaction (PCR) performed on 10 diverse cultivars that involvedJaponica, Indica and local accessions, revealed 12 polymorphic candidate genes. Seven polymorphic candidate genes were then utilized to genotype 148 individuals of CT9993 × IR62266 doubled haploid (DH) mapping population. The segregation data were tested for deviation from the expected Mendelian ratio (1:1) using a Chi-square test (<1%). Based on this, four candidate genes were assessed to be significant and the remaining three, as non-significant. All the significant candidate genes were biased towards CT9993, the female parent in the DH mapping population. Single-marker analysis strongly associated (<1%) them to different traits under both well-watered and low-moisture stress conditions. Two candidate genes,EXP15 andEXP13, were found to be associated with root number and silicon content in the stem respectively, under both well-watered and low-moisture stress conditions  相似文献   

14.
Phenolic acids are secondary metabolic organic compounds produced by plants and often are mentioned as allelochemicals. This study was conducted to determine the genetic basis controlling the ferulic acid content of rice straw in a recombinant inbred (RI) population derived from a cross between a japonica variety, Asominori, with a higher content of ferulic acid, and an indica variety, IR24, with a lower content, using 289 RFLP markers. Continuous distributions and transgressive segregations of ferulic acid content were observed in the RI population, which showed that ferulic acid content in rice straw was quantitatively inherited. Single marker analysis and composite interval mapping identified three quantitative trait loci (QTLs) for ferulic acid content with LOD values of 2.03 (chromosome 3), 3.16 (chromosome 6), and 3.06 (chromosome 7); all three had increased additive effects (13.5, 18.3, and 18.1 g g –1) from the Asominori parent and accounted for 5.5, 16.9, and 12.8% of total phenotypic variation, respectively. This is the first report on the identification of QTLs associated with ferulic acid and their chromosomal localization on the molecular map of rice. The tightly linked molecular markers that flank the QTLs might be useful in breeding and selection of varieties with higher phenolic acid content.  相似文献   

15.
Summary An efficient method was established for high-frequency embryogenic callus induction and plant regeneration from 3-,4-, 5- and 7-d-old coleoptile segments of Indica rice (Oryza sativa L. cv. Kasturi), Compact and friable callus developed from the cut ends and also on the entire length of the coleoptile segments cultured on Murashige and Skoog (MS) basal medium (1962) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 4.50–18.0 μM), kinetin (2.32 μM) and sucrose (3%, w/v). High frequency embryogenic callus induction and somatic embryo development was achieved when embryogenic calluses were transferred to MS medium supplemented with 2.25 μM 2,4-D, 2.32 μM kinetin, 490 μM L-tryptophan and 3% (w/v) sucrose. Plant regeneration was achieved by transferring clumps of embryogenic callus onto MS medium containing 2.85 μM indole-3-acetic acid (IAA), 17.77 μM 6-benzylaminopurine (BA) and 3% (w/v) sucrose. Histological observations of embryogenic calluses revealed the presence of somatic embryos and also plant regeneration via multiple shoot bud formation. Three, 4- and 5-d-old coleoptile segments showed a significantly (P<0.05) higher frequency of plant regeneration and mean number of plantlets per explant in comparison to 7-d-old coleoptile segments. The highest frequency (73.5%) of plant regeneration and mean number of plantlets (11.9±1.0) was obtained from 4-d-old coleoptile segments. Regenerated shoots were rooted on MS basal medium containing 4.92 μM indole-3-butyric acid (IBA) and plants were successfully transferred to soil and grown to maturity.  相似文献   

16.
A rice mutant, G069, characteristic of few tiller numbers, was found in anther culture progeny from the F1 hybrid between an indica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent, G069 was further backcrossed with the recurrent parent, 02428, for two turns to develop a BC2F2 population. Genetic analysis in the BC2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants in BC2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the 02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C  相似文献   

17.
The thermo-sensititve genic male-sterile (TGMS) gene in rice can alter fertility in response to temperature and is useful in the two-line system of hybrid rice production. However, little is known about the TGMS gene at the molecular level. The objective of this study was to identify molecular markers tightly linked with the TGMS gene and to map the gene onto a specific rice chromosome. Bulked segregant analysis of an F2 population from 5460s (a TGMS mutant line) x Hong Wan 52 was used to identify RAPD markers linked to the rice TGMS gene. Four hundred RAPD primers were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants; of these, 4 primers produced polymorphic products. Most of the polymorphic fragments contained repetitive sequences. Only one singlecopy sequence fragment was found, a 1.2-kb fragment amplified by primer OPB-19 and subsequently named TGMS1.2. TGMS1.2 was mapped on chromosome 8 with a RIL population and confirmed by remapping with a DHL population. Segregation analysis using TGMS1.2 as a probe indicated that TGMS1.2 both consegregated and was lined with the TGMS gene in this population. It is located about 6.7 cM from the TGMS gene. As TGMS1.2 is linked to the TGMS gene, the TGMS gene must be located on chromosome 8.This research was supported by the Rockefeller Foundation and China National High-Tech Research and Development Program. The first author is a Rockefeller Career Fellow at Texas Tech University  相似文献   

18.
 Paste viscosity parameters play an important role in estimating the eating, cooking and processing quality of rice. Four cytoplasmic male-sterile (CMS) lines and eight restorer (R) lines were employed in an incomplete diallel cross to analyze seed effects, cytoplasmic effects and maternal gene effects on the viscosity profiles of indica rice. The results indicated that the viscosity profiles of rice were controlled by the direct effects of the seed, by the cytoplasm and by maternal plant. The seed-direct effects (V A +V D ) accounted for over 51% of the total genetic variances (V A +V D +V C +V Am +V Dm ) for all the traits, suggesting that seed direct effects were more important than maternal effects and cytoplasmic effects. The additive variances (V A +V Am ) were much larger than the dominance variances (V D +V Dm ), which revealed that additive genetic effects were the major contributors of genetic variation for the paste viscosity profiles, and that selection could be applied for viscosity traits in the early generations. Significant cytoplasmic variance (V C ) was detected for hot paste viscosity (HPV), cool paste viscosity (CPV) and consistency viscosity (CSV). The cytoplasmic effects for these three traits can, therefore, not be neglected in rice breeding. It was also shown that seed heritabilities (h 2 o ) tended to be larger than maternal heritabilities (h 2 m ) and cytoplasmic heritabilities (h 2 c ). Prediction of the main genetic effects for 12 parents showed that CMS lines had highly positive effects on all the traits except for the breakdown viscosity (BDV), and that R lines had both positive and negative effects on the paste viscosity characteristics. Received: 3 August 1998 / Accepted: 28 November 1998  相似文献   

19.
20.
Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (~500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ~22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号