首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose is a kind of renewable resource that is abundant in nature. It can be degraded by microorganisms such as mildew. A mildew strain with high cellulase activity was isolated from mildewy maize cob and classified as Aspergillus glaucus XC9 by morphological and 18S rRNA gene sequence analyses. We studied the effects of nitrogen source, initial pH, temperature, incubation time, medium composition, and surfactants on cellulase production. Maximal activities of carboxymethylcellulase (6,812 U/g dry koji) and filter paperase (172 U/g dry koji) were obtained in conditions as follows: initial pH, 5.5–6.0; temperature, 30°C; cultivation period, 3–4 days; inoculum ratio, 6% (vol/vol); sugarcane bagasse/wheat bran ratio, 4:6. When bagasse was used as substrate and mixed with wet koji at a 1:1 (wt/wt) ratio, the yield of reducing sugars was 36.4%. The corresponding conversion rate of cellulose to reducing sugars went as high as 81.9%. The results suggest that A. glaucus XC9 is a preferred candidate for cellulase production. Translated from the Journal of Xiamen University (Natural Science), 2005, 44(1) (in Chinese)  相似文献   

2.
Cellulase production was carried out by solid state fermentation using corncob residue, a lignocellulosic waste from the xylose industry, as the substrate of Trichoderma reesei ZU-02. The effects of water content, dosage of wheat bran and initial pH value in solid substrate on cellulase synthesis were studied in shallow tray fermentors. The solid substrate could be reused in at least three batches and the highest cellulase activity (158 IFPU/g koji) was obtained in the second fermentation batch. To produce cellulase on a larger scale, a deep trough fermentor with forced aeration was used and 128 IFPU/g koji (305 IFPU/g cellulose) was reached after 5 days solid state fermentation. The enzyme koji produced in the present process can be used directly to hydrolyze corncob residue effectively, when the cellulase dosage was above 20 IFPU/g substrate, the saccharification yield could be over 84%.  相似文献   

3.
Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5.  相似文献   

4.
The enzymatic digestibility of sugarcane bagasse was greatly increased by alkali (NaOH)–peracetic acid (PAA) pretreatment under mild conditions. The effects of several factors affecting the pretreatment were investigated. It was found that when bagasse was pre-pretreated by 10% (based on initial dry materials) NaOH with 3:1 liquid-to-solid ratio at 90 °C for 1.5 h and further delignified by 10% peracetic acid (based on initial dry materials) at 75 °C for 2.5 h, the yield of reducing sugars reached 92.04% by enzymatic hydrolysis for 120 h with cellulase loading of 15 FPU/g solid. Compared with acid and alkali pretreatment, alkali–PAA pretreatment could be conducted under milder conditions and was more effective for delignification with less carbohydrates being degraded in the pretreatment process. Alkaline stage played an important role for partial delignification, swelling fibers and subsequently reducing PAA loading. No loss of cellulase activity (FPA) was observed in the liquid phase for alkali–PAA pretreated bagasse after enzymatic hydrolysis for 120 h.  相似文献   

5.
黑曲霉AF-98固体发酵产纤维素酶的产酶条件研究   总被引:5,自引:0,他引:5  
通过单因子及正交试验,对黑曲霉AF-98固体发酵产纤维素酶的产酶条件进行了探讨。其优化的产酶条件为:甘蔗渣3g,麸皮2g,加含尿素为0.15%的Mandels营养液25mL(加水比1:5),调初始pH5.0,28℃发酵72h。在此优化条件下,纤维素酶活力可达7.56u/g干曲。  相似文献   

6.
木聚糖酶生产菌株的筛选及产酶条件的优化   总被引:6,自引:0,他引:6  
以甘蔗渣半纤维素为碳源,从垃圾场土壤中分离到6株分解半纤维素的菌株。通过固态发酵的木聚糖酶活力比较筛选到1株木聚糖酶活力较高的菌株。该菌株18S rDNA序列与曲霉(Aspergillus sp.)的同源性达97%,根据对菌株形态学分析和18S rDNA序列分析的结果,将该菌株鉴定为曲霉HQ3。HQ3的最佳产酶条件为:甘蔗渣:麸皮为7:3(W/W),固液比为1:4(W/W),尿素0.4 %,pH7.0,温度30℃,发酵产酶时间4 d。在最佳产酶条件下,其木聚糖酶活最高可达3421U/g干曲。  相似文献   

7.
This study demonstrates a method to prepare an immobilized cellulase by using an electrospun polyacrylonitrile (PAN) nanofibrous membrane as the support. To obtain an immobilized cellulase with high hydrolytic activity, the immobilization conditions including activation time, enzyme concentration, immobilization time, and temperature were optimized. Under those conditions, the immobilized cellulase possessed a protein loading of 30 mg/g-support and a specific activity of 3.2 U/mg-protein. After immobilization, the enzymatic stability of cellulase against pH and thermal stresses was improved. Fourier transform infrared spectroscopy (FTIR) measurements also revealed that the cellulase was covalently bonded to the supports. The immobilized cellulase was then used to hydrolyze cell wall of microalgae for the production of reducing sugars. Analyses using response surface methodology (RSM) show that the hydrolysis yield was affected by the reaction temperature, pH, and substrate/cellulase mass ratio, and a hydrolysis yield of 60.86% could be obtained at 47.85 °C, pH 5.82, and a substrate/cellulase mass ratio of 40 g-substrate/g-cellulase. This result suggests that the proposed scheme for the cellulase immobilization has great potential for the application to the reducing sugar production.  相似文献   

8.
We investigated xylanase production by Thermoascus aurantiacus using semisolid fermentation. Multivariant statistical approaches were employed to evaluate the effects of several variables (initial moisture in the medium, cultivation time, inoculum level, and bagasse mass) on xylanase production. The initial moisture content and bagasse mass were the most important factors affecting xylanase activity. The xylanase activity produced by the fungus under the optimized conditions (81% moisture content and 17 g bagasse) was found to be 2700 U per gram of initial dry matter, whereas its value predicted by a polynomial model was 2400 U per gram of initial dry matter. Received: 4 December 1998 / Received revision: 15 March 1999 / Accepted: 16 May 1999  相似文献   

9.
Summary The use of a column cellulose hydrolysis reactor with continuous enzyme recycling was demonstrated by incorporating a continuous ultrafiltration apparatus at the effluent end of the column reactor. Using this setup, over 90% (w/v) cellulose hydrolysis was achieved, resulting in an average sugar concentration of 6.8% (w/v) in the effluent stream. The output of the system was 1.98 g of reducing sugar/l/h with a ratio of 87% (w/v) of the reducing sugars being monomeric sugars. Batch hydrolysis reactors were less effective, resulting in 57% (w/v) of the cellulose being hydrolyzed. The output of the batch reactor was 1.33 g of reducing sugar/l/h with similar product concentrations and percentage of monomeric sugars. The ratio of reducing sugar/filter paper unit of cellulase activity for the column method was 69.1 mg/U as compared to only 21.2 mg/U for the batch reactor.  相似文献   

10.
绿色木霉ZY-1固态发酵产纤维素酶   总被引:1,自引:0,他引:1  
利用筛选的绿色木霉ZY-1(Trichoderma viride ZY-1)固态发酵产纤维素酶,采用稻草和麸皮为底物,考察稻草与麸皮比例随发酵时间对产酶的影响。结果表明:底物中,在m(稻草):m(麸皮)为0:5和1:4时,发酵48h,pH保持4.5左右,还原糖量急剧上升,胞外蛋白产量最低;仅以稻草作底物时,整个发酵过程中pH约为7,还原糖量最低,胞外蛋白产量较高而滤纸酶活、羧甲基纤维素酶(CMCase)和β-葡萄糖苷酶(β-Gase)酶活均较低;在m(稻草):m(麸皮)为3:2时,发酵96h,滤纸酶活达最大值5.01U/g干曲;m(稻草):m(麸皮)为1:4时,发酵96h,β-Gase酶活达最大值4.6U/g干曲;m(稻草):m(麸皮)为4:1时,发酵72h,CMCase酶活达最大值6.01U/g干曲。因此,底物中存在适量的稻草和麸皮有利于Trichoderma viride ZY—1产纤维素酶。  相似文献   

11.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

12.
The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.  相似文献   

13.
Cellulolytic enzymes produced by Trichoderma sp. have attracted interest in converting the biomass to simple sugars in the production of cellulosic ethanol. In this work, a novel cellulolytic strain M501 was isolated and identified as T. gamsii by sequencing the ITS rDNA region. The production of cellulase (CMCase) by T. gamsii M501 was enhanced by employing statistical methods. The strain grown in the optimized production medium composed of mineral salts, microcrystalline cellulose (13.7 g/l), tryptone (4.8 g/l) and trace elements (2 mL/l) at pH 5.5 and 28 °C for 72 h produced a maximum CMCase of 61.3 U/mL. The optimized production medium also showed the other enzyme activity of FPU (2.6 U/mL), β-glucosidase (2.1 U/mL), xylanase (681 U/mL) and β- xylosidase (0.6 U/mL). The crude cellulase cocktail produced by T. gamsii M501 efficiently hydrolyzed alkali pretreated sugarcane bagasse with glucose and xylose yield of 78 % and 74 % respectively at 10 % solid loading. This study is the first of its kind research on biomass saccharification using T. gamsii cellulase cocktail. Therefore, the novel strain T. gamsii M501 would be useful for further development of an enzyme cocktail for cellulosic ethanol production.  相似文献   

14.
Summary Fed-batch fermentations of Acidothermus cellulolyticus utilizing mixtures of cellulose and sugars were investigated for potential improvements in cellulase enzyme production. In these fermentations, we combined cellulose from several sources with various simple sugars at selected concentrations. The best source of cellulose for cellulase production was found to be ball-milled Solka Floc at 15 g/l. Fed-batch fermentations with cellobiose and Solka Floc increased cell mass only slightly, but succeeded in significantly enhancing cellulase synthesis compared to batch conditions. Maximum cellulase activities obtained from fermentations initiated with 2.5 g cellobiose/l and 15 g Solka Floc/l were 0.187 units (U)/ml, achieved by continuous feeding to maintain <0.1 g cellobiose/l, and 0.215 U/ml using the same initial medium when 2.5 g cellobiose/l was step-fed after the sugar was nearly consumed. In batch, dual-substrate systems consisting of simple sugars with Solka Floc, substrate inhibition was evident in terms of specific growth rates, specific productivity values, and maximum enzyme yields. Limiting concentrations of glucose or sucrose at 5 g/l, and cellobiose at 2.5 g/l, in the presence of Solka Floc, yielded cellulase activities of 0.134, 0.159, and 0.164 U/ml, respectively. Offprint requests to: M. E. Himmel  相似文献   

15.
AIM: Production of L-lactic acid in solid-state fermentation (SSF) using polyurethane foam (PUF) as inert support moistened with cassava bagasse starch hydrolysate. METHODS AND RESULTS: PUF impregnated with cassava bagasse starch hydrolysate as major carbon source was used for the production of L-lactic acid using Lactobacillus casei in solid-state condition. The key parameters such as reducing sugar, inoculum size and nutrient mixture were optimized by statistical approach using response surface methodology. More than 95% conversion of sugars to lactic acid from 4 g reducing sugar per gram dry support was attained after 72 h when the inert substrate was moistened with 6.5 ml of nutrient solution and inoculated with 1.5 x 10(9) CFU of L. casei. While considering the lactate yield based on the solid support used, a very high yield of 3.88 g lactic acid per gram PUF was achieved. CONCLUSION: PUF acted as an excellent inert support for L. casei and provided a platform for the utilization of starchy waste hydrolysate in a lower reactor volume. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a cost effective cultivation of lactic acid bacteria for producing lactic acid from agro based waste products such as cassava bagasse. This is the first report on the exploitation of PUF as an inert support for lactate production under SSF.  相似文献   

16.
The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a non-sterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventing fermentation was estimated to be 8.3% by weight.  相似文献   

17.
Xylanase production by Aspergillus foetidus MTCC 4898 was carried out under solid state fermentation using wheat bran and anaerobically treated distillery spent wash. Response surface methodology involving Box–Behnken design was employed for optimizing xylanase production. The interactions among various fermentation parameters viz. moisture to substrate ratio, inoculum size, initial pH, effluent concentration and incubation time were investigated and modeled. The predicted xylanase activity under optimized parameters was 8200–8400 U/g and validated xylanase activity was 8450 U/g with very poor cellulase activity. Crude xylanase was used for enzymatic saccharification of agroresidues like wheat straw, rice straw and corncobs. Dilute NaOH and ammonia pretreatments were found to be beneficial for the efficient enzymatic hydrolysis of all the three substrates. Dilute NaOH pretreated wheat straw, rice straw and corncobs yielded 4, 4.2, 4.6 g/l reducing sugars, respectively whereas ammonia treated wheat straw, rice straw and corncobs yielded 4.9, 4.7, 4.6 g/l reducing sugars, respectively. The hydrolyzates were analysed by HPTLC. Xylose was found to be the major end product with traces of glucose in the enzymatic hydrolyzates of all the substrates.  相似文献   

18.
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 °C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 °C).  相似文献   

19.
以亚硫酸盐甘蔗渣浆酶解液作为原料,利用C. shehatae发酵制取燃料乙醇。结果表明:还原糖最适初始质量浓度为葡萄糖140 g/L、木糖60 g/L、酶解液总糖80 g/L。利用初始葡萄糖55.06 g/L、木糖11.18 g/L、纤维二糖4.51 g/L的亚硫酸盐甘蔗渣浆酶解液发酵,经18 h获得乙醇22.98 g/L。乙醇得率为67.23%,葡萄糖利用率为99.27%,木糖利用率为32.96%,C. shehatae适合作为蔗渣为原料的乙醇发酵菌株。  相似文献   

20.
Thermoactinomyces thalophilus produced cellulase free extracellular endo-1,4-beta-xylanase (EC 3.2.1.8) at 50 degrees C and pH 8.5. Maximum xylanase production was achieved in fermentation medium using birchwood xylan as substrate after 96 h of growth at 50 degrees C. Other agricultural substrates such as wheat bran, wheat straw, sugarcane bagasse and cornstover produced less xylanase. The crude enzyme preparation from mutant T. thalophilus P2 grown under optimised fermentation conditions showed no cellulase contamination and maximum xylanase activity of 42 U/ml at 65%deg;C and pH 8.5-9.0. This enzyme with initial xylanase activity of 42 U/ml was found thermostable up to 65 degrees C and retaining 50% of its activity after its incubation for 125 min at 65 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号