首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research work was aimed to formulate clotrimazole encapsulated Cavamax W7 composite ethosomes by injection method for improved delivery across epidermis. 32 factorial design was used to design nine formulations (F1-F9) and compared with ethosomal formulations (F10-F12). F9 with vesicle size of 202.8 ± 4.8 nm, highest zeta potential (−83.6 ± 0.96 mV) and %EE of 98.42 ± 0.15 was selected as optimized composite ethosome and F12 as reference ethosomal formulation. As revealed by transmission electron microscopy F9 vesicles were more condensed, uniformly spherical in shape than F12 vesicles. Vesicular stability studies indicated F9 to be more stable as compared to F12. Both F9 and F12 were incorporated in carbopol 934 gel base to get G1–G8 gel formulations and evaluated for in vitro skin permeability. Cavamax W7 composite ethosomal optimized gel (G5) showed higher in vitro percent cumulative drug permeation (88.53 ± 2.10%) in 8 h and steady state flux (J ss) of 3.39 ± 1.45 μg/cm2/min against the J ss of 1.57 ± 0.23 μg/cm2/min for ethosomal gel (G1) and 1.13 ± 0.06 μg/cm2/min for marketed formulation. The J ss flux of G5 was independent of amount of drug applied/unit area of skin. In vivo confocal laser scanning microscopic study of G5 depicted uniform and deeper penetration of rhodamine B (marker) in epidermis from Cavamax W7 composite ethosomal gel in comparison to G1. Finally, G5 demonstrated better (p < 0.05) antifungal activity against Candida albicans and Aspergillus niger than G1 thus, signifying that Cavamax W7 composite ethosomes present a superior stable and efficacious vesicular system than ethosomal formulation for topical delivery of clotrimazole.  相似文献   

2.
Meloxicam gel was designed based on the matching of the solubility parameter (δ) of the drug with that of the polymer and subsequently with skin for improved dermal delivery of meloxicam. The δ of meloxicam (11.48 (cal/cm3)0.5) determined by solubility measurement was matched statistically to the solubility parameter of monomers, n-vinyl-2-pyrrolidone, polyvinyl alcohol (PVA), hydroxyl ethyl methacrylate, ethylene glycol methacrylate (EGMA) determined by intrinsic viscosity measurement. Consequently gels were formulated by polymerization in selected solvent blend of water/ethyl acetate (20:80) in which the drug showed maximum solubility. Thus, F1–F16 formulations designed were evaluated for physicochemical properties, textural analysis, and in vitro drug release. On the basis of optimum characteristics, F2 (PVA, δ = 16.96 (cal/cm3)0.5) and F8 (EGMA, δ = 18.35 (cal/cm3)0.5) formulated by suspension polymerization were selected and subjected to skin irritation and topical anti-inflammatory studies. The formulation F8 demonstrated significant (p < 0.05) of anti-inflammatory activity in comparison to marketed piroxicam gel and was free from irritation.  相似文献   

3.
This study reports on the optimization of protoplast yield from two important tropical agarophytes Gracilaria dura and Gracilaria verrucosa using different cell-wall-degrading enzymes obtained from commercial sources. The conditions for achieving the highest protoplast yield was investigated by optimizing key parameters such as enzyme combinations and their concentrations, duration of enzyme treatment, enzyme pH, mannitol concentration, and temperature. The significance of each key parameter was also further validated using the statistical central composite design. The enzyme composition with 4% cellulase Onozuka R-10, 2% macerozyme R-10, 0.5% pectolyase, and 100 U agarase, 0.4 M mannitol in seawater (30‰) adjusted to pH 7.5 produced the highest protoplast yields of 3.7 ± 0.7 × 106 cells g−1 fresh wt for G. dura and 1.2 ± 0.78 × 106 cells g−1 fresh wt for G. verrucosa when incubated at 25°C for 4–6 h duration. The young growing tips maximally released the protoplasts having a size of 7–15 μm in G. dura and 15–25 μm in G. verrucosa, mostly from epidermal and upper cortical regions. A few large-size protoplasts of 25–35 μm, presumably from cortical region, were also observed in G. verrucosa.  相似文献   

4.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

5.
The objectives of this study were to develop morphine sulfate sustained-release tablet formulations and to evaluate the bioequivalence compared with a commercial brand. The physicochemical properties of the formulated and commercial tablets were determined and compared. The bioequivalence investigation was carried out in 15 healthy male volunteers who received a single dose in a randomized two-way crossover design. After dosing, serial blood samples were collected for a period of 24 h. Morphine concentration was assayed by high-performance liquid chromatography with electrochemical detector. The log-transformed C max and AUCs were statistically compared by analysis of variance, and the 90% confidence intervals (CIs) of the ratio of the log-transformed C max and AUCs between the most promising developed formulation and the commercial product were determined. It was found that the dissolution rate profile of a developed formulation was similar to the commercial brand. Their similarity and difference factors were well within limits. In the bioequivalence study, the AUClast and AUCinf between the test and the reference products were not statistically different (p = 0.227 and p = 0.468, respectively), with the 90% CIs of 83.4–102.6% and 87.7–139.4%, respectively. However, the C max of the two formulations was significantly different (p = 0.019). The 90% CI of the developed formulation was 72.0–93.0% compared to the commercial product. In vitro dissolution of locally prepared morphine sulfate sustained-release tablets was comparable to commercial brand. However, the results justified the conclusion of lack of bioequivalence of the developed product to the commercial one.  相似文献   

6.
Agrobacterium-mediated transformation, employing direct shoot organogenesis, allows for mature transgenic plants to be obtained quickly (3–4 mo). In this study, peanut (Arachis hypogaea L.) cultivars Florida-07, Georgia Green, Georgia Brown, New Mexico Valencia A, and VC-2 were selected to test their shoot induction response for use in future transformation experiments. Two types of cotyledon explants were examined, those that previously had an attached embryo axis upon cotyledon separation (explant A) and those that were embryo axis-free upon separation (explant B). Explants were placed onto a shoot induction medium with N 6-benzyladenine concentrations ranging from 10–80 μM for Florida-07, Georgia Green, and VC-2; 10–20 μM for Georgia Brown; and 10–640 μM for New Mexico Valencia A. Following a 4-wk culture period, explants were visually rated based on a scale of 1–4, where 1 indicated slight greening, but no growth, and 4 indicated greening, adventitious bud formation, as well as small leaf expansion. A difference in shoot induction was observed for the cotyledon explants examined (P > t = <0.0001). Explant A had greater shoot induction with a visual rating of 1.8 ± 0.1; explant B had a rating of 1.6 ± 0.1 (P > t = <0.0001). Additionally, cultivars responded to the culture conditions differently (cultivar × N 6-benzyladenine interaction). Georgia Green on 10 μM N 6-benzyladenine produced the most shoot buds (24.6%) and the highest visual rating (2.1), followed by VC-2 on 10 μM N 6-benzyladenine (22.1%, 1.8), New Mexico Valencia A on 640 μM N 6-benzyladenine (21.4%, 1.8), Georgia Brown on 80 μM N 6-benzyladenine (9.0%, 1.7), and Florida-07 on 40 μM N 6-benzyladenine (7.1%, 1.8). Of the tested varieties, Georgia Green, New Mexico Valencia A, and VC-2 were best suited for future transformation experiments based on their shoot bud production.  相似文献   

7.
This experiment was conducted to evaluate the effect of zinc, manganese, and copper sources (inorganic vs. organic) in the diet on laying performance and eggshell quality characteristics. One hundred and eighty Hy-Line W-36 layers at 38 weeks of age were allocated to 36-layer cages of five hens each. Each six cages were randomly assigned to one of the six experimental diets fed from 38 to 53 week of age. In three experimental treatments, the basal diet was supplemented with 65–75–7 or 65–75–7 or 40–40–7 mg/kg of Zn, Mn, and Cu, respectively, from their oxide or sulfate sources. Three other groups were fed diets supplemented with 20–20–3.5 or 40–40–7.5 or 60–60–10.5 mg/kg of organic forms of Zn, Mn, and Cu, respectively. Dietary treatments significantly did affect feed intake (P < 0.001), feed conversion ratio (P < 0.001) and percentage of broken eggs (P < 0.05). Substitution of Zn and Mn oxides (65 and 75 mg kg−1, respectively) with equal amounts of their sulfate forms significantly improved feed intake, feed conversion ratio, percentage of broken eggs, and Haugh Unit (P < 0.05). In addition, laying hens maintained their performance when substitution of Zn and Mn oxides and Cu sulfate (65, 75, and 7 mg kg−1, respectively) reduced up to 20, 20, and 3.5 mg kg−1 by amino acid complexes of the microelements. The results showed that a corn–soybean diet supplemented with the organic forms of Zn, Mn, and Cu at a dosage 50% to 75% lower than NRC recommendation is sufficient to maintain laying performance and can improve eggshell and albumen qualities of the egg in laying hens.  相似文献   

8.
This study describes the application of the laser photoacoustic spectroscopy (PAS) for quantification of total carotenoids (TC) in corn flours and sweetpotato flours. Overall, thirty-three different corn flours and nine sweetpotato flours were investigated. All PAS measurements were performed at room temperature using 488-nm argon laser radiation for excitation and mechanical modulation of 9 and 30 Hz. The measurements were repeated within a run and within several days or months. The UV–Vis spectrophotometry was used as the reference method. The concentration range that allows for the reliable analysis of TC spans a region from 1 to 40 mg kg−1 for corn flours and from 9 to 40 mg kg−1 for sweetpotato flours. In the case of sweetpotato flours, the quantification may extend even to 240 mg kg−1 TC. The estimated detection limit values for TC in corn and sweetpotato flours were 0.1 and 0.3 mg kg−1, respectively. The computed repeatability (n = 3–12) and intermediate precision (n = 6–28) RSD values at 9 and 30 Hz are comparable: 0.1–17.1% and 5.3–14.7% for corn flours as compared with 1.4–9.1% and 4.2–23.0% for sweetpotato flours. Our results show that PAS can be successfully used as a new analytical tool to simply and rapidly screen the flours for their nutritional potential based on the total carotenoid concentration.  相似文献   

9.
In the present study attempt was made for preparation of isotretinoin-hydroxypropyl β cyclodextrin (HP-β-CD) inclusion complex and encapsulate this complex in elastic liposomes to study the effect of dual carrier approach on skin targeting of isotretinoin. The isotretinoin HP-β-CD complex was prepared by freeze-drying method and characterized by IR spectroscopy. The drug and drug-CD complex loaded elastic liposomal formulation were prepared and characterized in vitro, ex-vivo and in vivo for shape, size, entrapment efficiency, no. of vesicles per cubic mm, in vitro skin permeation and deposition study, photodegradation and skin toxicity assay. The transdermal flux for different vesicular formulations was observed between 10.5 ± 0.5 to 13.9 ± 1.6 μg/cm2/h. This is about 15-21 folds higher than that obtained from drug solution (0.7 ± 0.1 μg/cm2/h) and 4-5 folds higher than obtained with drug-CD complex solution (2.7 ± 0.1 μg/cm2/h). The amount of drug deposit was found to increase significantly (p < 0.05) by cyclodextrin complexation (30.1 ± 0.1 μg). The encapsulation of this complex in elastic liposomal formulation further increases its skin deposition (262.2 ± 21 μg). The results of skin irritation study using Draize test also showed the significant reduction in skin irritation potential of isotretinoin elastic liposomal formulation in comparison to free drug. The results of the present study demonstrated that isotretinoin elastic liposomal formulation possesses great potential for skin targeting, prolonging drug release, reduction of photodegradation, reducing skin irritation and improving topical delivery of isotretinoin.  相似文献   

10.
Blocking the CD28/B7 costimulatory pathway is a promising strategy in the treatment of graft rejection, graft-versus-host disease and autoimmune diseases. LEA29Y, a high-affinity variant of cytotoxic T-lymphocyte antigen 4-immunoglobulin (CTLA4Ig), is a more potent inhibitor of the interaction between CD28 and B7 than is CTLA4Ig. In a previous study, LEA29Y was produced in a mammalian cell system, which is time-consuming and expensive. To obtain LEA29Y more efficiently and cost effectively, we attempted to produce LEA29Y using a Pichia pastoris expression system. The gene encoding LEA29Y, with an additional 6-His tag at the N-terminus, was cloned into the yeast vector pPIC9K and expressed in the P. pastoris strain GS115. Under the optimized induction conditions for protein expression (inoculum density, OD600 = 80; methanol concentration added daily, 1.0–3.0%; induction time point, 72–96 h; culture medium pH = 6.0), the yield of purified LEA29Y was approximately 30 mg l−1 by one-step Ni-agarose affinity chromatography. PNGase F treatment showed the purified LEA29Y to be post-translational modified by N-linked glycosylation. In biological function assays, LEA29Y expressed in P. pastoris demonstrated specific binding to B7-1/B7-2-positive Raji cells and also suppressed lymphocyte proliferation in a dose-dependent manner. These results suggest that LEA29Y produced in P. pastoris is biologically active and will be useful for experimental therapy on immunotherapy for transplant rejection and autoimmune diseases.  相似文献   

11.
Mountain-grown ginseng (Panax ginseng C. A. Meyer; Sansam in Korean) is believed to possess more potent biological activity than red ginseng. This study examined the endothelium-dependent vasorelaxant effects and possible mechanisms of crude ginsenosides from adventitious roots of Korean mountain-grown ginseng (GS-ARMG) and red ginseng (GS-RG) in isolated rat aorta pre-contracted with norepinephrine. GS-ARMG (0.03–3.0 mg/mL) produced transient acute relaxation in a concentration-dependent manner, with a maximum relaxation (mean ± SEM) of 90 ± 9% and a median effective concentration (EC50) of 0.09 ± 0.07 mg/mL. GS-ARMG displayed about 25-fold more potent activity than GS-RG (maximum relaxation 50 ± 4%, EC50 2.34 ± 1.30 mg/mL). Relaxations induced by both GS-ARMG (1.0 mg/mL) and GS-RG (1.0 mg/mL) were nearly abolished by endothelial ablation or pre-treatment with N G -nitro-l-arginine, a nitric oxide synthase inhibitor, or by methylene blue, a soluble guanylate cyclase inhibitor. These inhibitory effects, however, revealed different sensitivity of GS-ARMG and GS-RG; the maximum relaxations attained were 30–38% and 13–17% that of untreated preparations, respectively, but indomethacin and cyclooxygenase inhibitors did not affect the response. None of the receptor antagonists, atropine, diphenhydramine, [D-Pro2, D-Trp7, 9]-substance P, or propranolol, caused any significant inhibition to GS-ARMG-induced relaxation; however, atropine or propranolol caused a 10% reduction in the relaxation, suggesting possible involvement of a muscarinic receptor or a β-adrenoceptor in the GS-ARMG-induced relaxation. These results demonstrate that GS-ARMG produces endothelium-dependent relaxation of isolated rat aorta similar to that of GS-RG; increased nitric oxide production and increased vascular levels of cGMP in endothelial cells could contribute to the relaxation. However, GS-ARMG has more potent activity than GS-RG to relax isolated rat aorta though an active substance(s), which might be higher in mountain-grown ginseng due to the growing conditions on mountains or the processing during manufacture of GS-ARMG. These factors may contribute to understanding the biological beneficial effects of mountain-grown ginseng.  相似文献   

12.
The purpose of this study was to develop a lyotropic liquid crystalline formulation using the emulsifier vitamin E TPGS and evaluate its behavior after incorporation of a flavonoid, quercetin. The physical (macro and microscopic), chemical (determination of quercetin content by the HPLC method) and functional (determination of quercetin antioxidant activity by DPPH assay) stability of the lamellar liquid crystalline formulation containing flavonoid was evaluated when stored at 4 ± 2 °C; 30 ± 2 °C/70 ± 5% RH (relative humidity) and 40 ± 2 °C/70 ± 5% RH during 12 months. The lamellar liquid crystalline structure of the formulation was maintained during the experiment, however chemical and functional stability results showed a great influence of the storage period in all conditions tested. A significant decrease in quercetin content (approximately 40%) was detected during the first month of storage and a similar significant loss in antioxidant activity was detected after 6 months. The remaining flavonoid content was unchanged during the final 6 months of the experimental period. The results suggest possible interactions between quercetin and the liquid crystalline formulation, which could inhibit or reduce the quercetin activity incorporated in the system. In conclusion, the present study demonstrated that incorporation of quercetin (1%) did not affect the liquid crystalline structure composed of vitamin E TPGS/IPM/PG–H2O (1:1) at 63.75/21.25/15 (w/w/w). Nevertheless, of the total quercetin incorporated in the system only 60% was free to act as an antioxidant.  相似文献   

13.
Zinc has been reported to enhance the response to interferon (IFN) or PEG-IFN plus ribavirin therapy, improve liver function, and ameliorate hematologic side effects in patients with chronic hepatitis C. However, the role of zinc supplementation during IFN therapy in chronic hepatitis B infection (CHB) remains unclear. We therefore aimed to report the results of zinc and IFN-alpha-2a therapy in children with CHB. Twenty-two naive, HBeAg-positive children (mean age 10.4 ± 4.4 years) received IFN-α2a (9 MU/m2 sc) for 6 months plus peroral zinc (7.5 mg/day for <10 years and 10 mg/day for >10 years) for 12 months. Serum zinc, alanine aminotransferase (ALT), complete blood count, hepatitis B virus DNA (HBV DNA), and serological markers were measured. Histological (HR) and sustained response (SR) were evaluated at 6 months after completion of therapy. Normalization of ALT, HBeAg seroconversion, and HBV DNA < 10,000 copies/ml were considered as SR. HR was defined as decrease in Knodell histological activity index (HAI) score by at least 2 points compared to baseline. End of therapy ALT level and log HBV DNA were significantly lower than pretherapy levels (p = 0.001 and p = 0.001, respectively), while zinc level was not different. Portal inflammation score significantly decreased after therapy (p = 0.043), however, total HAI and other HAI components were not different. SR and HR were 25% and 52.9%. In conclusion as a first study investigating the effect of zinc and IFN combination therapy in children with CHB, SR and HR rates were not better than previously reported monotherapy or combination therapies.  相似文献   

14.
Protoplast culture and plant regeneration of an important medicinal plant Tylophora indica were achieved through callus regeneration. Protoplasts were isolated from leaf mesophyll cells and cultured at a density of 5 × 105 protoplasts per gram fresh weight, which is required for the highest frequency of protoplast division (33.7%) and plating efficiency (9.3%). The first division was observed 2 d after plating and the second division after 4 d. Culture medium consists of Murashige and Skoog (MS) liquid medium with 4 μM 2,4-D, 0.4 M mannitol and 3% (w/v) sucrose with pH adjusted to 5.8. After 45 d of culture at 25°C in the dark, protoplasts formed colonies consisting of about 100 cells. The protoplast-derived microcalli were visible to the naked eye within 60 d of culture and reached a size of 0.2–0.4 mm in diameter after 90 d. Calli of 0.2–0.4-mm size were transferred to MS medium supplemented with 2,4-D (4 μM), 3% (w/v) sucrose and 0.8% (w/v) agar, formed friable organogenic calli (7-8 mm size) after 8 wk under incubation in normal light period supplemented with 200 μmol m−2 S−1 of day light fluorescent illumination. The calli were transferred to MS medium supplemented with thidiazuron (TDZ) (1–7 μM) and naphthalene acetic acid (NAA) (0.2–0.4 μM) for regeneration. The calli developed shoot buds after 3–4 wk, and the frequencies of calli-forming shoots varied from 5% to 44%. Optimum shoot regeneration occurred on MS medium supplemented with 5 μM TDZ and 0.4 μM NAA. On this medium, 44% cultures responded with an average number of 12 shoots per callus. Whole plants were recovered following rooting of shoots in 1/2 MS medium supplemented with 3 μM indole 3-butyric acid.  相似文献   

15.
Three varieties of Kappaphycus alvarezii (Kapilaran, KAP), Tambalang purple (PUR), Adik-adik (AA), and one variety of Kappaphycus striatum var. sacol (green sacol (GS) were used to determine the efficiency of Acadian marine plant extract powder (AMPEP) as a culture medium at different concentrations, for the regeneration of young plants of Kappaphycus varieties, using tissue culture techniques for the production of seed stock for nursery and outplanting purposes for the commercial cultivation of carrageenophytes. A shorter duration for shoot formation was observed when the explant was treated with AMPEP + Plant Growth Regulator (PGR = PAA + zeatin at 1 mg L−1) compared to AMPEP when used singly. However, four explants responded differently to the number of days required for shoot formation. The KAP variety took 46 days to form shoots at 3–4 mg L−1 AMPEP + PGR; while PUR required 21 days at 3–5 mg L−1 AMPEP and 3–4 mg L−1 AMPEP + PGR. AA required 17 days at 3–5 mg L−1 AMPEP and AMPEP + PGR; and GS 25 days at 1 mg L−1 AMPEP + PGR. It was observed that among the four explants used, PUR and AA initiated shoot formation with the use of AMPEP only at higher concentrations (3–5 mg L−1) after a shorter period. Only PUR responded positively to ESS/2 for shoot initiation. The use of AMPEP alone and/or in combination with PGR as a culture medium in the propagation of microplantlets using tissue culture technique is highly encouraging.  相似文献   

16.
In order to develop a practical approach for fast and non-destructive assay of total fatty acid (TFA) and pigments in the biomass of the marine microalga Nannochloropsis sp. changes in TFA, chlorophyll, and carotenoid contents were monitored in parallel with the cell suspension absorbance. The experiments were conducted with the cultures grown under normal (complete nutrient f/2 medium at 75 μmol PAR photons/(m2 s)) or stressful (nitrogen-lacking media at 350 μmol PAR photons/(m2 s)) conditions. The reliable measurement of the cell suspension absorbance using a spectrophotometer without integrating sphere was achieved by deposition of cells on glass–fiber filters in the chlorophyll content range of 3–13 mg/L. Under stressful conditions, a 30–50% decline in biomass and chlorophyll, retention of carotenoids and a build-up of TFA (15–45 % of dry weight) were recorded. Spectral regions sensitive to widely ranging changes in carotenoid-to-chlorophyll ratio and correlated changes of TFA content were revealed. Employing the tight inter-correlation of stress-induced changes in lipid metabolism and rearrangement of the pigment apparatus, the spectral indices were constructed for non-destructive assessment of carotenoid-to-chlorophyll ratio (range 0.3–0.6; root mean square error (RMSE) = 0.03; r 2 = 0.93) as well as TFA content of Nannochloropsis sp. biomass (range 5.0–45%; RMSE = 3.23 %; r 2 = 0.89) in the broad band 400–550 nm normalized to that in chlorophyll absorption band (centered at 678 nm). The findings are discussed in the context of real-time monitoring of the TFA accumulation by Nannochloropsis cultures under stressful conditions.  相似文献   

17.
Caffeine complexation by chlorogenic acid (3-caffeoylquinic acid, CAS Number [327-97-9]) in aqueous solution as well as caffeine–chlorogenate complex in freshly prepared coffee brews have been investigated by high-resolution 1H-NMR. Caffeine and chlorogenic acid self-associations have also been studied and self-association constants have been determined resorting to both classical isodesmic model and a recently introduced method of data analysis able to provide also the critical aggregation concentration (cac). Furthermore, caffeine–chlorogenate association constant was measured. For the caffeine, the average value of the self-association constant determined by isodesmic model (K i = 7.6 ± 0.5 M−1) is in good agreement with the average value (K a = 10 ± 1.8 M−1) determined with the method which permits the determination of the cac (8.43 ± 0.05 mM). Chlorogenic acid shows a slight decreased tendency to aggregation with a lower average value of association constants (K i = 2.8 ± 0.6 M−1; K a = 3.4 ± 0.6 M−1) and a critical concentration equal to 24 ± 1 mM. The value of the association constant of the caffeine–chlorogenate complex (30 ± 4 M−1) is compatible with previous studies and within the typical range of reported association constants for other caffeine–polyphenol complexes. Structural features of the complex have also been investigated, and the complex conformation has been rediscussed. Caffeine chemical shifts comparison (monomeric, complexed, coffee brews) clearly indicates a significant amount of caffeine is complexed in beverage real system, being chlorogenate ions the main complexing agents.  相似文献   

18.
The biodegradation potential of an innovative enclosed tubular biofilm photobioreactor inoculated with a Chlorella sorokiniana strain and an acclimated activated sludge consortium was evaluated under continuous illumination and increasing pretreated (centrifuged) swine slurry loading rates. This photobioreactor configuration provided simultaneous and efficient carbon, nitrogen, and phosphorous treatment in a single-stage process at sustained nitrogen and phosphorous removals efficiencies ranging from 94% to 100% and 70–90%, respectively. Maximum total organic carbon (TOC), NH4 +, and PO4 3− removal rates of 80 ± 5 g C mr −3 day−1, 89 ± 5 g N mr −3 day−1, and 13 ± 3 g P mr −3 day−1, respectively, were recorded at the highest swine slurry loadings (TOC of 1,247 ± 62 mg L−1, N–NH4 + of 656 ± 37 mg L−1, P–PO4 3+ of 117 ± 19 mg L−1, and 7 days of hydraulic retention time). The unusual substrates diffusional pathways established within the phototrophic biofilm (photosynthetic O2 and TOC/NH4 + diffusing from opposite sides of the biofilm) allowed both the occurrence of a simultaneous denitrification/nitrification process at the highest swine slurry loading rate and the protection of microalgae from any potential inhibitory effect mediated by the combination of high pH and high NH3 concentrations. In addition, this biofilm-based photobioreactor supported efficient biomass retention (>92% of the biomass generated during the pretreated swine slurry biodegradation).  相似文献   

19.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

20.
Outdoor open thin-layer microalgal photobioreactor: potential productivity   总被引:1,自引:0,他引:1  
We have previously estimated the productivity and photosynthetic efficiency of the microalga Chlorella sp. grown in an outdoor open thin-layer photobioreactor under climate conditions typical of the Middle European region, i.e. with many days unsuitable for intensive growth of algae (cloudy and rainy days, low air temperature, low solar PAR input).To estimate the real potential productivity of the bioreactor, we collected data on algae yields obtained during clear summer day periods. Cultivation was performed in fed-batch cycles in a bioreactor with a 224 m2 culture area (length 28 m, slope 1.7%), and a 6–7 mm-thick layer of algal culture. The suspension volume in the bioreactor was 2,000 L. The mean values found for Třeboň (49°N), Czech Republic, as an average of several sunny summer cultivation periods in July, were: net areal productivity, P net = 38.2 g dry weight (DW) m-2 day-1; net volumetric productivity, Pvol, = 4.3 g algal DW L-1 day-1, photosynthetic efficiency (based on PAR), ηnet = 7.05%. The peak values were: P net about 50 g (DW) m-2 day-1, ηnet about 9%. Algal growth rate was practically linear up to high biomass densities (40–50 g DW L-1, corresponding to an areal density of 240–300 g DW m-2), at which point the culture was harvested. The concentration of dissolved oxygen increased from about 10 mg L-1 at the beginning to about 23 mg L-1 at the end of culture area at noon. Use of the above-described technology for economical production of bioethanol is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号