首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The diatom flora in a 164 cm long sediment core obtained from Jiaozhou Bay (Yellow Sea, China) was analyzed in order to trace the response of diatoms to environmental changes over the past 100 years. The sediment core was dated by 210Pb and 137Cs and represented approximately 100 years (1899–2001 A.D.). The flora was mainly composed of centric diatoms (59–96%). The concentration of diatoms declined sharply above 30 cm (after ~ 1981 A.D.), while the dominant species changed from Thalassiosira anguste-lineatus, Thalassiosira eccentria, Coscinodiscus excentricus, Coscinodiscus concinnus and Diploneis gorjanovici to Cyclotella stylorum and Paralia sulcata. Species richness decreased slightly, and the cell abundance of warm-water species increased. We argue that these floral changes were probably caused by climate change in combination with eutrophication resulting from aquaculture and sewage discharge.  相似文献   

2.
The implementation of the European Water Framework Directive (WFD) requires the development of ecologically-based classification systems for anthropogenically-induced eutrophication in all types of water bodies. Due to the inherent high temporal and spatial variability of hydrological and geochemical parameters of the coastal waters of the southern Baltic Sea, discrimination between anthropogenic impact and natural variability is necessary. The development of statistical methods for this discrimination was the main aim of this study. These methods were used to derive indicative phytoplankton parameters for different stages of eutrophication for the investigation area. For this purpose, a long-term phytoplankton data series was analysed, which covered a broad salinity and eutrophication gradient. In order to detect eutrophication effects, the analysis was restricted to phytoplankton spring bloom events and to the salinity range between 5 and 10 psu, i.e. superimposing seasonal and hydrodynamic effects were eliminated. An artificial abiotic degradation vector was developed based on four typical water quality parameters. A total of 11 potentially indicative phytoplankton parameters on different taxonomical levels arose from a correlation analysis with this degradation vector. These indicators were then tested for their ability to discriminate between three eutrophication levels. Finally, seven phytoplankton indices could be proposed: total phytoplankton biovolume, the percentage of diatoms and the biovolume of different size ranges of diatoms and one indicative species (Woronichinia compacta). Guest editors: A. Razinkovas, Z. R. Gasiūnaitė, J. M. Zaldivar & P. Viaroli European Lagoons and their Watersheds: Function and Biodiversity  相似文献   

3.
Nitrogen fixation was investigated by means of the acetylene reduction method during the development of a water bloom of Nodularia in coastal waters of the Baltic Sea west of the island of Hiddensee and in backwaters showing different degrees of eutrophication. Depending on plankton density, the values found varied greatly. The maximum of nitrogen fixation values found in extremely dense water blooms under special conditions (Baltic Sea, 2250 μg N2/l · h; Kleiner Jasmunder Bodden, 374 μg N2/l · h) are up to 103 times higher than from other parts of the Baltic Sea or from inland waters. The average nitrogenase activity determined for coastal water populations of the Baltic Sea is 2.15 pg N2/heterocyst · h and that of the inmost backwaters 0.77 pg N2/heterocyst · h. The relationship between N2-fixation and nutrient content in water is discussed.  相似文献   

4.
The fouling green algae Enteromorpha intestinalis is a cosmopolitan benthic species, which causes green tides in many coastal areas and is used as an indicator species for eutrophication in the Baltic Sea area. The life cycle of E. intestinalis alternates between two morphologically identical reproductive stages, a haploid gametophyte phase and a diploid sporophyte phase. However, it also reproduces through asexual propagation. The reproductive cycles of E. intestinalis in the Baltic Sea and elsewhere are largely unknown. Here we report five polymorphic microsatellite markers developed from enriched genomic libraries. The number of alleles per locus ranged from 7 to 25.  相似文献   

5.
The toxic dinoflagellate Alexandrium ostenfeldii is the only bioluminescent bloom-forming phytoplankton in coastal waters of the Baltic Sea. We analysed partial luciferase gene (lcf) sequences and bioluminescence production in Baltic A. ostenfeldii bloom populations to assess the distribution and consistency of the trait in the Baltic Sea, and to evaluate applications for early detection of toxic blooms. Lcf was consistently present in 61 Baltic Sea A. ostenfeldii strains isolated from six separate bloom sites. All Baltic Sea strains except one produced bioluminescence. In contrast, the presence of lcf and the ability to produce bioluminescence did vary among strains from other parts of Europe. In phylogenetic analyses, lcf sequences of Baltic Sea strains clustered separately from North Sea strains, but variation between Baltic Sea strains was not sufficient to distinguish between bloom populations. Clustering of the lcf marker was similar to internal transcribed spacer (ITS) sequences with differences being minor and limited to the lowest hierarchical clusters, indicating a similar rate of evolution of the two genes. In relation to monitoring, the consistent presence of lcf and close coupling of lcf with bioluminescence suggests that bioluminescence can be used to reliably monitor toxic bloom-forming A. ostenfeldii in the Baltic Sea.  相似文献   

6.
Some ecological properties in relation to eutrophication in the Baltic Sea   总被引:1,自引:0,他引:1  
Bonsdorff  E.  Rönnberg  C.  Aarnio  K. 《Hydrobiologia》2002,(1):371-377
The current published information of the influence of eutrophication on the Baltic Sea is reviewed and summarized. Harmful effects at different levels of the ecosystem are identified, and the spatial and temporal variability of these properties characterized. The Baltic Marine Environment Bibliography was searched on the web, and some 1170 references with eutrophication as a keyword were extracted and analyzed. The most studied regions were the Gulf of Finland (including the Archipelago Sea), Kattegat and the Bothnian Sea. The search was further divided into several parameters (transparency, oxygen/hypoxia, nutrients, primary production/ chlorophyll a, algal mats, macroalgae, zoobenthos and fish) related to eutrophication. In most regions, chlorophyll, zoobenthos and fish were the most commonly studied biological and ecological parameters. The linking of eutrophication, ecology and a potential decision-support system is discussed, and related to similar attempts elsewhere.  相似文献   

7.
Tarja Katajisto 《Hydrobiologia》1996,320(1-3):153-159
Many planktonic calanoid copepod species have been proved to spend a part of their life cycle as benthic resting eggs. In addition to avoiding seasonally occurring unfavourable conditions resting stages may also be used as a long-term survival strategy. The aim of this study was to find out for how long eggs of calanoid copepods retain their viability in the sediments of the Baltic Sea. The occurrence of viable copepod eggs in sea bottom sediment was studied in Pojovik Bay, SW coast of Finland. Eggs were found throughout a 25 cm deep core but deeper than 20 cm they were very scarce. Eggs were incubated at 12 °C in order to check the viability, and their age was estimated by determining the sediment accumulation rate with 137Cs-method. Viable eggs were estimated to be 10–13 yrs old, some possibly even 18–19 yrs. Most eggs in the top 8 cm were viable, their age being up to 7–8 yrs. Nauplii that hatched from the eggs belonged to Acartia bifilosa and Eurytemora affinis, A. bifilosa dominating the hatchers of the top sedment layers and E. affinis the deeper layers. Preliminary evidence is presented that E. affinis produces true diapause eggs in the Baltic Sea.  相似文献   

8.
The history of expansion of bloom-forming cold water dinoflagellates in the Northern Baltic Sea was studied using 100-year-old sediment archives of their resting cysts. Vertical cyst distributions of Biecheleria baltica and Apocalathium malmogiense, two dinoflagellates indistinguishable by light microscopy and not recognized as distinct species in monitoring, and chain-forming Peridiniella catenata were analysed in Pb210 and Cs137 dated layers of a sediment core from deep, hypoxic accumulation bottoms of the Gulf of Finland. Cyst profiles showed that B. baltica and A. malmogiense were already present in the Baltic spring phytoplankton community at the beginning of the 20th century. This confirms that B. baltica, which was only recognized in the late 1980s, is a native species in the area. A drastic increase in B. baltica cyst concentrations in the 1930s to 1960s coincided with the acceleration of anthropogenic eutrophication. Large cyst deposits accumulated over several decades in the sediment which, by the 1980s, amounted to the seed stock necessary to inoculate dominant blooms. In the cyst records A. malmogiense always contributed a minor fraction of the two species. P. catenata had a relatively short cyst record in Gulf of Finland sediments despite demonstrated long-term presence in the plankton, which emphasizes that cyst-based historic surveys are not suitable for all cyst-forming dinoflagellates. This was corroborated by correspondence analyses of long-term plankton and cyst records which validated the trends from the sediment archive for B. baltica and A. malmogiense, but failed to do so for P. catenata. Germination experiments with 100-year-old cysts revealed a remarkable long-term survival capacity of A. malmogiense, making this species a suitable model for resurrection studies testing adaptation in heavily impacted systems such as the Baltic Sea.  相似文献   

9.
Long-term research in the Baltic Sea revealed the basic trends of zooplankton community variations depending on oceanographic processes. Alternation of the periods of increase and decrease in salinity of the Baltic Sea against the background of climate changes (temperature increase) and eutrophication affect the state of the entire Baltic ecosystem, including zooplankton. For these periods, the dynamics of zooplankton in the Baltic Sea were analyzed based on literature data and results of regular research in the southeastern Baltic Sea during 1998–2007. The changes in the hydrological situation were accompanied by significant changes in the zooplankton community. In the 1990s–2000s, the abundance and biomass of brackish-water and thermophilous species primarily of Cladocera and Copepoda increased markedly. The role of the previously dominant marine copepod Pseudocalanus elongatus decreased due to salinity reduction in the deep-water part of the Baltic Sea. Maximum development of zooplankton occurred in years of the greatest warming-up of the water (2001, 2005–2007) against the background of a general positive trend of zooplankton abundance in the last decade.  相似文献   

10.
This study follows up on a previous assessment of eutrophication status in the Baltic Sea, which covered the period 2001–2006. The updated assessment is based on new eutrophication targets, an improved eutrophication assessment tool (HEAT 3.0) as well as monitoring data for the period 2007–2011. Based on classifications of eutrophication status in all Baltic Sea sub-basins, we reveal that during the assessment period 2007–2011, the entire open Baltic Sea was affected by eutrophication. This is a different conclusion compared to earlier assessments and studies. Whilst the confidence of the assessment was high or moderate in most basins, there were indications of declining confidence in some assessment units and improved confidence in others. The problems in confidence were mainly related to scarcity of in situ monitoring data on chlorophyll-a and Secchi depth. The potential implications of our results, e.g. the expansion of the eutrophic zone and declining confidence in the classifications of eutrophication status, are discussed in relation to the existing Baltic Sea-wide nutrient management strategy as well as future assessment activities.  相似文献   

11.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

12.
Charophytes are a highly endangered group of algae. In the Baltic Sea, the number of species, distribution area and biomass of charophytes have significantly decreased in recent decades. Although eutrophication triggers their initial decline, the mechanism of the final extinction of charophyte populations is not fully understood. An in situ experiment was performed to study the role of the mesoherbivores Idotea baltica, Gammarus oceanicus and Palaemon adspersus in the decline of charophytes in the north-eastern Baltic Sea. Invertebrate grazing showed a clear seasonality: grazing pressure was low in April, moderate in July, and high in October. Grazing on charophytes by P. adspersus was negligible, whereas I. baltica and G. oceanicus significantly reduced the biomass of charophytes in the field. Low photosynthetic activity (high decomposition rate) of the charophytes favoured grazing. The invertebrates studied preferred Chara tomentosa to C. connivens. Low consumption of C. connivens may reflect its non-native origin. The experiment suggests that, under moderately eutrophic conditions, grazers are not likely to control charophyte populations. However, grazers have the potential to eliminate charophytes in severely eutrophic systems under the stress of filamentous algae.Communicated by H.D. Franke  相似文献   

13.
Marine macrophytes and -algae have undergone major changes in abundance and species composition over the last decades, primarily due to eutrophication. However, comparable studies conducted in the mid 20th century are rare, but potentially valuable for enabling insight into changes in the benthic communities from the early onset of the eutrophication of the Baltic Sea. In the present study, the submerged phytobenthic community in the exposed southern archipelago of the Åland Islands was examined in 2018 and compared with surveys conducted in 1956 and 1993, respectively. The aim was to analyze long-term changes in the phytobenthic community in relation to the general large-scale anthropogenic drivers since the 1950s. Between 1956 and 1993, a decrease in the total number of species/taxa, an increase of filamentous algae coverage and a decrease in the depth range of Fucus vesiculosus was observed. These changes in the phytobenthic community continued between 1993 and 2018, suggesting no changes in the previously described negative trends. Between 1956 and 2018, a general shift in the distribution of phytobenthic functional groups, (grouped according to morphology and type of algae; green, brown and red) occurred, with increased coverage of filamentous brown and green algae, and decline in red algae coverage. The depth range of F. vesiculosus also decreased by >50% between 1956 and 2018. The results support findings that the eutrophication of the northern Baltic Sea is still at a high level, which slows down or prevents the recovery of offshore phytobenthic communities, despite the progress seen in other areas. Thus, the likely main drivers behind the changes are the direct and indirect effects of eutrophication in combination with warmer water, i.e. an effect of climate change.  相似文献   

14.
Much of the Baltic Sea is currently classified as ‘affected by eutrophication’. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50–100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long‐term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112‐year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid‐1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long‐term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large‐scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem‐based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.  相似文献   

15.
The eutrophication status of the entire Baltic Sea is classified using a multi-metric indicator-based assessment tool. A total of 189 areas are assessed using indicators where information on reference conditions (RefCon), and acceptable deviation (AcDev) from reference condition could be combined with national monitoring data from the period 2001?C2006. Most areas (176) are classified as ??affected by eutrophication?? and only two open water areas and 11 coastal areas are classified as ??unaffected by eutrophication??. The classification is made by application of the recently developed HELCOM Eutrophication Assessment Tool (HEAT), which is described in this paper. The use of harmonized assessment principles and the HEAT tool allows for direct comparisons between different parts of the Baltic Sea despite variations in monitoring activities. The impaired status of 176 areas is directly related to nutrient enrichment and elevated loads from upstream catchments. Baltic Sea States have implemented nutrient management strategies since years which have reduced nutrient inputs. However, eutrophication is still a major problem for large parts of the Baltic Sea. The 2007 Baltic Sea Action Plan is projected to further reduce nutrient inputs aiming for a Baltic Sea unaffected by eutrophication by 2021.  相似文献   

16.
Open circuit potentials of stainless steels increased when immersed in the Baltic Sea. The ennoblement potential was +200 mVsce in 40 to 50 days when sea water temperature was below 52°C and +300–400 mVsce within <40 days at around 102°C. Ennoblement occurred in a laboratory ecosystem at 232°C in 20 to 30 days, and at 262°C in <20 days, but no ennoblement occurred at A322°C within 40 days. By the time the ennoblement was complete, compact microcolonies covered 1–10% of the steel surface. Nutrient enrichment of Baltic Sea water by twofold above the natural levels increased microbial growth but attenuated open circuit potential increase of the stainless steels. Exposure of the ennobled stainless steels to similar levels of nutrients did not reverse the already developed open circuit potentials. Attenuation of the ennobling response of the stainless steels by increases of temperature and eutrophication suggests a role for microorganisms which is crucial for the electrochemical behaviour of steels in brackish Baltic Sea water. Journal of Industrial Microbiology & Biotechnology (2000) 24, 410–420. Received 02 November 1999/ Accepted in revised form 24 March 2000  相似文献   

17.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

18.
Hillebrand  Helmut  Sommer  Ulrich 《Hydrobiologia》2000,426(1):185-192
In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.  相似文献   

19.
There are very few time series documenting clear trends of change in the biomass of total phytoplankton or single taxa that coincide with trends of increasing nutrient concentrations. Weekly or biweekly monitoring since 1997 on a cross section of the central Gulf of Finland (NE Baltic Sea) with similar climatic and hydrographic conditions, but different nutrient levels, provided a uniform dataset. In order to evaluate seasonal (June–September) patterns of phytoplankton succession, more than 1,200 samples were statistically analyzed by selecting 12 dominant taxa using wet weight biomass values. In addition, the continuously measured hydrographic parameters on board the ships of opportunity, and simultaneous nutrient analyses gave high frequency information on the water masses. The objective of this study was to identify the taxa that may prove indicative in the assessment of eutrophication in the appropriate monitoring time periods. None of the most common bloom-forming species (Aphanizomenon sp., Nodularia spumigena, and Heterocapsa triquetra) showed reliable correlations with enhanced nutrient concentrations. The species we suggest as reliable eutrophication indicators—oscillatorialean cyanobacteria and the diatoms Cyclotella choctawhatcheeana and Cylindrotheca closterium—showed the best relationships with total phosphorus concentrations. Their maxima appear toward the end of July or in August–September when phytoplankton community structure is more stable, and less frequent observations may give adequate results. Another diatom, Skeletonema costatum, exhibited stronger correlations with dissolved inorganic and total nitrogen in June, during the period of the summer phytoplankton minimum. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

20.
Fatty acids in muscle tissue and eggs of female Atlantic salmon Salmo salar spawners were analysed to evaluate the dietary quality of their final feeding areas in the Baltic Sea. The final likely feeding area was identified by comparing stable carbon and nitrogen isotope composition of the outermost growth region (final annulus) of scales of returned S. salar with that of reference S. salar caught from different feeding areas. Some overlap of stable‐isotope reference values among the three areas, in addition to prespawning fasting, decreased the ability of muscle tri‐acylglycerols to discriminate the final likely feeding area and the area's dietary quality. Among three long‐chained polyunsaturated fatty acids, docosahexaenoic acid (DHA; 22:6n‐3), eicosapentaenoic acid (EPA; 20:5n‐3) and arachidonic acid (ARA; 20:4n‐6), the proportions of ARA in total lipids of spawning S. salar muscle and eggs showed a significant negative correlation with increasing probability of S. salar having returned from the Baltic Sea main basin (i.e. the Baltic Sea proper). The results suggest that ARA in muscle and eggs is the best dietary indicator for dietary characteristics of final marine feeding area dietary characteristics among S. salar in the Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号