首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 24p3 protein is a 25 kDa glycoprotein that is secreted into the uterine fluid during the proestrous phase of mice. We assessed the effects on spermatozoa motility and on the functions of mouse spermatozoa using the computer-assisted sperm analysis method, cytochemical staining and detection of the protein tyrosine phosphorylation pattern. Compared with the control cells, sperm motility was stimulated by the addition of 24p3 protein into the medium. Introducing 24p3 protein enhanced progressive motility but did not promote the appearance of hyperactivated movement. The presence of 24p3 protein in the medium did not allow the cells to undergo the capacitated protein tyrosine phosphorylation pattern and acrosome reaction. The tyrosine phosphorylation pattern shows phosphoproteins in the range of Mr 50000–106000 correlated with the sperm progressive motility after the addition of 24p3 protein into the medium. Using flow cytometry, we assessed the changes in the intracellular pH and measured the intracellular cAMP concentration with an immunodetection kit. The results indicated that the elevation in intracellular pH from 6.67 to 6.89, increase of intracellular cAMP accumulation, and protein tyrosine phosphorylation might be the factors in enhancement of sperm motility as the 24p3 protein bound to the spermatozoa. The 24p3 protein may have a role in regulating flagellar motility.  相似文献   

2.
Capacitation is the prerequisite process for sperm to gain the ability for successful fertilization. Unregulated capacitation will cause sperm to undergo a spontaneous acrosome reaction and then fail to fertilize an egg. Seminal plasma is thought to have the ability to suppress sperm capacitation. However, the mechanisms by which seminal proteins suppress capacitation have not been well understood. Recently, we demonstrated that a major seminal vesicle secretory protein, seminal vesicle autoantigen (SVA), is able to suppress bovine serum albumin (BSA)-induced mouse sperm capacitation. To further identify the mechanism of SVA action, we determine the molecular events associated with SVA suppression of BSA's activity. In this communication, we demonstrate that SVA suppresses the BSA-induced increase of intracellular calcium concentration ([Ca2+]i), intracellular pH (pH(i)), the cAMP level, PKA activity, protein tyrosine phosphorylation, and capacitation in mouse sperm. Besides, we also found that the suppression ability of SVA against BSA-induced protein tyrosine phosphorylation and capacitation could be reversed by dbcAMP (a cAMP agonist).  相似文献   

3.
Efficient in vitro capacitation of stallion sperm has not yet been achieved, as suggested by low sperm penetration rates reported in in vitro fertilization (IVF) studies. Our objectives were to evaluate defined incubation conditions that would support changes consistent with capacitation in stallion sperm. Protein tyrosine phosphorylation events and the ability of sperm to undergo acrosomal exocytosis under various incubation conditions were used as end points for capacitation. Sperm incubated 4-6h in modified Whitten's (MW) with the addition of 25 mM NaHCO3 and 7 mg/mL BSA (capacitating medium) yielded high rates of protein tyrosine phosphorylation. Either HCO3(-) or BSA was required to support these changes, with the combination of both providing the most intense results. When a membrane-permeable form of cAMP and a phosphodiesterase inhibitor (IBMX) were added to MW in the absence of HCO3(-) and BSA, the tyrosine phosphorylation results obtained in our capacitating conditions could not be replicated, suggesting either effects apart from cAMP were responsible for tyrosine phosphorylation, or that stallion sperm might respond differently to these reagents as compared to sperm from other mammals. Sperm incubation in capacitating conditions was also associated with high percentages (P相似文献   

4.
Changes of protein tyrosine phosphorylation in ejaculated boar sperm incubated in vitro were examined with the use of antiphosphotyrosine antibodies and immunoblotting. The intracellular levels of cAMP were modulated by treatment with various combinations of caffeine, 3-isobutyl-1-methylxanthine (IBMX), and dibutyryl cyclic AMP (dbcAMP), and acrosome reactions (ARs) were induced via treatment with divalent cation ionophore A23187. Proteins of Mr 34, 38, 40, and 44 (p34 . . . p44) were strongly phosphorylated on tyrosine residues in freshly prepared sperm samples and at the same level during all subsequent treatments. Incubation of sperm in vitro for various periods of time induced an increase of tyrosine phosphorylation of p20, p93, and p175. The tyrosine phosphorylation of p93, p175, and several other sperm proteins was up-regulated in a concentration-dependent manner following treatment of the sperm with dbcAMP, caffeine, or IBMX alone, or with combinations of caffeine and IBMX, respectively, with dbcAMP; the tyrosine phosphorylation of p20 was not correlated with treatment of sperm with cAMP-elevating reagents. The percentage of sperm cells undergoing spontaneous ARs was not affected by the manipulation of cAMP levels and was not correlated with protein tyrosine phosphorylation. In contrast, the addition of calcium to the incubation media decreased protein tyrosine phosphorylation and elevated percentage of spontaneous ARs. The induction of ARs with A23187 caused a significant decrease of tyrosine phosphorylation of p93, p175, and p220/230, indicating that dephosphorylation on protein tyrosine residues might be associated with calcium influx during physiological ARs as well. Proteins p93 and p175 were effectively solubilized in greater than 9M urea/1% triton and in SDS sample buffer, but to only a small extent in triton, while p20 was virtually completely extractable with triton. In conjunction with the previously reported isolation of active tyrosine kinase sp42 from triton extracts of noncapacitated boar sperm cells (Berruti and Porzio, 1992: Biochim Biophys Acta 1118:149–154), our results suggest that a cAMP-dependent event is required for tyrosine phosphorylation of triton-insoluble proteins such as p93 and p175. On the other hand, the tyrosine phosphorylation of p20 (and potentially other triton-soluble substrates) might not strictly require such cAMP up-regulation. We discuss the differences in the regulation of cAMP-dependent tyrosine phosphorylation in mouse, human, and boar sperm, and suggest that sensitivity to calcium and distinct basal levels of cyclic nucleotide PDE might correspond to species-specific reproduction strategies in mammals. Mol. Reprod. Dev. 51:304–314, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The sperm acrosome reaction and penetration of the egg follow zona pellucida binding only if the sperm has previously undergone the poorly understood maturation process known as capacitation. We demonstrate here that in vitro capacitation of bull, ram, mouse, and human sperm was accompanied by a time-dependent increase in actin polymerization. Induction of the acrosome reaction in capacitated cells initiated fast F-actin breakdown. Incubation of sperm in media lacking BSA or methyl-beta-cyclodextrin, Ca(2+), or NaHCO(3), components that are all required for capacitation, prevented actin polymerization as well as capacitation, as assessed by the ability of the cells to undergo the acrosome reaction. Inhibition of F-actin formation by cytochalasin D blocked sperm capacitation and reduced the in vitro fertilization rate of metaphase II-arrested mouse eggs. It has been suggested that protein tyrosine phosphorylation may represent an important regulatory pathway that is associated with sperm capacitation. We show here that factors known to stimulate sperm protein tyrosine phosphorylation (i.e., NaHCO(3), cAMP, epidermal growth factor, H(2)O(2), and sodium vanadate) were able to enhance actin polymerization, whereas inhibition of tyrosine kinases prevented F-actin formation. These data suggest that actin polymerization may represent an important regulatory pathway in with sperm capacitation, whereas F-actin breakdown occurs before the acrosome reaction.  相似文献   

6.
SPINKL, a serine protease inhibitor kazal‐type‐like protein initially found in mouse seminal vesicle secretions, possesses structurally conserved six‐cysteine residues of the kazal‐type serine protease inhibitor family. However, it has no inhibitory activity against serine proteases. Previously, it was found to have the ability to suppress murine sperm capacitation in vitro. Herein, we investigated the mechanisms underlying the suppressive effect of SPINKL on sperm capacitation. Three in vitro capacitation‐enhancing agents, including bovine serum albumin (BSA), methyl‐beta‐cyclodextrin (MBCD), and dibutyryl cyclic AMP (dbcAMP), coupled with 3‐isobutyl‐1‐methylxanthine (IBMX), were used to evaluate the influence of SPINKL on capacitation signaling. Preincubation of sperm with SPINKL suppressed BSA‐ and MBCD‐induced sperm capacitation by blocking three upstream signals of capacitation that is the cholesterol efflux from sperm plasma membranes, extracellular calcium ion influx into sperm, and increases in intracellular cAMP. Moreover, SPINKL also inhibited downstream signal transduction of capacitation since it suppressed dbcAMP/IBMX and N6‐phenyl cAMP (6‐Phe‐cAMP)‐activated cAMP‐dependent protein kinase‐associated protein tyrosine phosphorylation. Such inhibition is probably mediated by attenuation of SRC tyrosine kinase activity. Furthermore, SPINKL could not reverse capacitation once sperm had been capacitated by capacitation‐enhancing agents or capacitated in vivo in the oviduct. SPINKL bound to sperm existed in the uterus but had disappeared from sperm in the oviduct during the sperm's transit through the female reproductive tract. Therefore, SPINKL may serve as an uncapacitation factor in the uterus to prevent sperm from precocious capacitation and the subsequent acrosome reaction and thus preserve the fertilization ability of sperm. J. Cell. Biochem. 114: 888–898, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.  相似文献   

8.
Kinases, phosphatases and proteases during sperm capacitation   总被引:1,自引:0,他引:1  
Fertilization is the process by which male and female haploid gametes (sperm and egg) unite to produce a genetically distinct individual. In mammals, fertilization involves a number of sequential steps, including sperm migration through the female genital tract, sperm penetration through the cumulus mass, sperm adhesion and binding to the zona pellucida, acrosome exocytosis, sperm penetration through the zona and fusion of the sperm and egg plasma membranes. However, freshly ejaculated sperm are not capable of fertilizing an oocyte. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation, before acquiring fertilizing capabilities. Several molecules are required for successful capacitation and in vitro fertilization; these include bicarbonate, serum albumin (normally bovine serum albumin, BSA) and Ca(2+). Bicarbonate activates the sperm protein soluble adenylyl cyclase (SACY), which results in increased levels of cAMP and cAMP-dependent protein kinase (PKA) activation. The response to bicarbonate is fast and cAMP levels increase within 60?s followed by an increase in PKA activity. Several studies with an anti-phospho-PKA substrate antibody have demonstrated a rapid increase in protein phosphorylation in human, mouse and boar sperm. The target proteins of PKA are not known and the precise role of BSA during capacitation is unclear. Most of the studies provide support for the idea that BSA acts by removing cholesterol from the sperm. The loss of cholesterol has been suggested to affect the bilayer of the sperm plasma membrane making it more fusogenic. The relationship between cholesterol loss and the activation of the cAMP/PKA pathway is also unclear. During early stages of capacitation, Ca(2+) might be involved in the stimulation of SACY, although definitive proof is lacking. Protein tyrosine phosphorylation is another landmark of capacitation but occurs during the late stages of capacitation on a different time-scale from cAMP/PKA activation. Additionally, the tyrosine kinases present in sperm are not well characterized. Although protein phosphorylation depends upon the balanced action of protein kinases and protein phosphatase, we have even less information regarding the role of protein phosphatases during sperm capacitation. Over the last few years, several reports have pointed out that the ubiquitin-proteasome system might play a role during sperm capacitation, acrosome reaction and/or sperm-egg fusion. In the present review, we summarize the information regarding the role of protein kinases, phosphatases and the proteasome during sperm capacitation. Where appropriate, we give examples of the way that these molecules interact and regulate each other's activities.  相似文献   

9.
We previously demonstrated that mouse sperm capacitation is accompanied by a time-dependent increase in protein tyrosine phosphorylation that is dependent on the presence of BSA, Ca2+, and NaHCO(3), all three of which are also required for this maturational event. We also demonstrated that activation of protein kinase A (PK-A) is upstream of this capacitation-associated increase in protein tyrosine phosphorylation. BSA is hypothesized to modulate capacitation through the removal of cholesterol from the sperm plasma membrane. In this report, we demonstrate that incubation of mouse sperm medium containing BSA results in a release of cholesterol from the sperm plasma membrane to the medium; release of this sterol does not occur in medium devoid of BSA. We next determined whether cholesterol release leads to changes in protein tyrosine phosphorylation. Blocking the action of BSA by adding exogenous cholesterol-SO-(4) to the BSA-containing medium inhibits the increase in protein tyrosine phosphorylation as well as capacitation. This inhibitory effect is overcome by (1) the addition of increasing concentrations of BSA at a given concentration of cholesterol-SO-(4) and (2) the addition of dibutyryl cAMP plus IBMX. High-density lipoprotein (HDL), another cholesterol binding protein, also supports the capacitation-associated increase in protein tyrosine phosphorylation through a cAMP-dependent pathway, whereas proteins that do not interact with cholesterol have no effect. HDL also supports sperm capacitation, as assessed by fertilization in vitro. Finally, we previously demonstrated that HCO-(3) is necessary for the capacitation-associated increase in protein tyrosine phosphorylation and demonstrate here, by examining the effectiveness of HCO-(3) or BSA addition to sperm on protein tyrosine phosphorylation, that the HCO-(3) effect is downstream of the site of BSA action. Taken together, these data demonstrate that cholesterol release is associated with the activation of a transmembrane signal transduction pathway involving PK-A and protein tyrosine phosphorylation, leading to functional maturation of the sperm.  相似文献   

10.
The acrosome is a membrane-limited granule that overlies the nucleus of the mature spermatozoon. In response to physiological or pharmacological stimuli, sperm undergo calcium-dependent exocytosis termed the acrosome reaction, which is an absolute prerequisite for fertilization. Protein tyrosine phosphorylation and dephosphorylation are a mechanisms by which multiple cellular events are regulated. Here we report that calcium induces tyrosine phosphorylation in streptolysin O (SLO)-permeabilized human sperm. As expected, pretreatment with tyrphostin A47-a tyrosine kinase inhibitor-abolishes the calcium effect. Interestingly, the calcium-induced increase in tyrosine phosphorylation has a functional correlate in sperm exocytosis. Masking of phosphotyrosyl groups with a specific antibody or inhibition of tyrosine kinases with genistein, tyrphostin A47, and tyrphostin A51 prevent the acrosome reaction. By reversibly sequestering intra-acrosomal calcium with a photo-inhibitable chelator, we show a requirement for protein tyrosine phosphorylation late in the exocytotic pathway, after the efflux of intra-acrosomal calcium. Both mouse and human sperm contain highly active tyrosine phosphatases. Importantly, this activity declines when sperm are incubated under capacitating conditions. Inhibition of tyrosine phosphatases with pervanadate, bis(N,N-dimethylhydroxoamido)hydroxovanadate, ethyl-3,4-dephostatin, and phenylarsine oxide prevents the acrosome reaction. Our results show that both tyrosine kinases and phosphatases play a central role in sperm exocytosis.  相似文献   

11.
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.  相似文献   

12.
The presence and role of the c-kit protein was investigated in the mature sperm of the mouse. The c-kit monoclonal antibody (mAb) ACK2 reacted specifically with the acrosomal region and the principal piece of fixed noncapacitated sperm but did not react with the acrosome region in acrosome-reacted sperm. ACK2 significantly inhibited the acrosome reaction; this inhibition was relieved by the calcium ionophore A23187. The kit ligand stem cell factor (SCF) significantly increased the percentage of sperm undergoing acrosome reaction. This increase was partially inhibited by the calcium channel inhibitor (verapamil), the PI3k inhibitor (wortmannin), and the PLC inhibitor (U-73122). ACK2 predominantly recognized c-kit proteins of 33, 48, and 150 kDa by Western blotting of mouse sperm extracts. The 48- and 150-kDa protein bands were released into the media and tyrosine autophosphorylated at low basal levels during acrosome reaction. On stimulation with SCF, the level of c-kit phosphorylation increased significantly. These findings suggest that c-kit is present in mature sperm, and its binding to SCF may result in the activation of PLCγ1 and PI3K, leading to receptor autophosphorylation, and ultimately may play a role in capacitation and/or the acrosome reaction. Mol. Reprod. Dev. 49:317–326, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Mammalian sperm gain the ability to fertilize an egg successfully by the capacitation process. An unregulated capacitation process causes sperm to undergo a spontaneous acrosome reaction (AR) and resulting in loss of their fertilization activity. Thus, functional sperm activation is tightly regulated by a capacitation and suppression (decapacitation) mechanism. Factors, such as platelet-activating factor (PAF) present in both sperm and the female genital tract, are able to stimulate sperm capacitation. Seminal plasma is thought to have the ability to suppress sperm capacitation; however, the regulatory mechanisms of seminal plasma protein on sperm capacitation are not well understood. Recently, we demonstrated that seminal vesicle autoantigen (SVA), a major seminal vesicle secretory protein, is able to suppress mouse sperm capacitation. To further study the suppression spectra of SVA on sperm capacitation, we investigated the effect of SVA on PAF-induced mouse sperm capacitation-related signals. Here, we demonstrate that SVA decreases the [Ca(2+)](i) to suppress the PAF's effects on [Ca(2+)](i), the cAMP level, protein tyrosine phosphorylation, and capacitation. The inhibition of PAF-induced protein tyrosine phosphorylation and capacitation by SVA can be reversed by cAMP agonists. Characterization of the interactions of SVA with PAF by TLC overlay and tryptophan fluorescence spectrum analyses indicates that SVA is capable of binding PAF with an apparent dissociation constant K(d) > 50 microM. Together with these results, we demonstrate that SVA deceases [Ca(2+)](i) and cross-talks with PAF-induced intracellular signals to regulate mouse sperm capacitation.  相似文献   

14.

Background/Aims

The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium.

Methodology and Principal Findings

Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization.

Conclusions

This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization.  相似文献   

15.
Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation   总被引:5,自引:0,他引:5  
Mammalian sperm are incapable of fertilizing eggs immediately after ejaculation; they acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes sperm undergo in the female reproductive tract that render sperm able to fertilize constitute the phenomenon of "sperm capacitation." We have demonstrated that capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins and that these events are regulated by an HCO(3)(-)/cAMP-dependent pathway involving protein kinase A. Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenylyl cyclase, HCO(3)(-) has a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO(3)(-) but not Cl(-) induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO(3)(-)-dependent hyperpolarization was not observed when Na(+) was replaced by the non-permeant cation choline(+). Replacement of Na(+) by choline(+) also inhibited the capacitation-associated increase in protein tyrosine phosphorylation as well as the zona pellucida-induced acrosome reaction. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation medium. The lack of a hyperpolarizing HCO(3)(-) current and the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na(+) suggest that a Na(+)/HCO(3)(-) cotransporter is present in mouse sperm and is coupled to events regulating capacitation.  相似文献   

16.
As spermatozoa mature within the epididymis they acquire the potential for capacitation and ultimately fertilization. In biochemical terms, the former is reflected in the progressive activation of a signal transduction pathway characterized by cAMP-mediated induction of phosphotyrosine expression on the sperm tail. In this study, we have examined the cellular mechanisms controlling this maturational event. Caput epididymal spermatozoa exhibited tyrosine phosphorylation on the sperm head that was largely unresponsive to cAMP and not significantly impaired by removal of extracellular HCO(3) (-). In contrast, caudal epididymal spermatozoa exhibited low levels of phosphorylation on the sperm head, yet responded dramatically to cAMP by phosphorylating a new set of proteins on the sperm tail via mechanisms that were highly dependent on extracellular HCO(3) (-). The impact of extracellular HCO(3) (-) depletion on caudal cells was not associated with a significant change in the redox regulation of cAMP but could be fully reversed by buffering the intracellular pH with N-Tris[Hydroxymethyl]methyl-3-amino-propanesulfonic acid (TAPS). The pattern of tyrosine phosphorylation was also profoundly influenced by the presence or absence of added extracellular calcium. In the presence of this cation, only caudal spermatozoa could respond to increased extracellular cAMP with tyrosine phosphorylation of the sperm tail. However, in calcium-depleted medium, this difference completely disappeared. Under these conditions, caput and caudal spermatozoa were equally competent to exhibit phosphotyrosine expression on the sperm tail in response to cAMP. These results emphasize the pivotal role played by calcium and HCO(3) (-) in modulating the changes in tyrosine phosphorylation observed during epididymal maturation.  相似文献   

17.
The aim of this work was to determine whether laminin (Ln), an extracellular matrix protein, induces the intracellular events that may be involved in producing the acrosome reaction in human sperm. To this end, we evaluated the effect of Ln on tyrosine phosphorylation, intracellular calcium concentration, proteasome activity, and phosphorylation in human sperm. Aliquots of highly motile sperm selected with a Percoll gradient, were incubated with different concentrations of Ln (0-20 μg/ml) for different periods (0-18 h). The percentage of viable acrosome-reacted sperm was evaluated using fluorescein isothiocyanate-labeled Pisum sativum agglutinin and Hoechst 33258 DNA dye. Tyrosine phosphorylation was evaluated by Western blot analysis. The chymotrypsin-like activity of the proteasome was evaluated with a fluorogenic peptide, and intracellular calcium concentration was measured with fura-2. The results indicate that Ln stimulated the acrosome reaction of human sperm in a dose-dependent manner. This increase was drastically inhibited in the presence of herbimycin A, SU6656, and epoxomicin. In addition, Ln increased proteasome activity and phosphorylation; both events were inhibited by herbimycin A and SU6656. Finally, Ln induced an increase in intracellular calcium concentration, which was inhibited by SU6656 and epoxomicin. These results suggest that Ln is able to induce the acrosome reaction. This effect may be mediated by Src kinase and the proteasome, with the consequent induction of a calcium influx.  相似文献   

18.
Mammalian sperm undergo capacitation in the female reproductive tract or under defined conditions in vitro. Although capacitation is now considered to be mediated by intracellular signaling events, including protein phosphorylation, the regulation of the transduction mechanisms is poorly understood. The objective of the present study was to evaluate the importance of medium components on capacitation of porcine sperm, the appearance of an M(r) 32 000 sperm protein (p32), and activity of a tyrosine kinase (TK-32). As determined by the ability of the sperm to undergo the A23187-induced acrosome reaction, pig sperm require bicarbonate and calcium but not BSA for capacitation in vitro. The appearance of p32 was assessed by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. The appearance of p32 requires calcium, although p32 appears even in the absence of bicarbonate in the incubation medium, demonstrating that the appearance of this tyrosine phosphoprotein is not a final end point of pig sperm capacitation. An in-gel tyrosine kinase renaturation assay showed that TK-32 activity depends on calcium and bicarbonate in the incubation medium. Immunoprecipitation experiments using an anti-phosphotyrosine antibody and inhibitor demonstrated that p32 and TK-32 are different proteins. These data indicate that the signal transduction mechanisms of capacitation in pig sperm are different from those in other mammals, suggesting that certain species specificity may exist with respect to this phenomenon.  相似文献   

19.
20.
Ubiquinol-cytochrome-c reductase core protein 2 (UQCRC2) is a component of ubiquinol-cytochrome c reductase complex that is known to correlate with male fertility via spermatogenesis. Simultaneously, nutlin-3a is a small molecule antagonist of mouse double minute 2 repressor (MDM2), activate p53 and induce apoptosis responsible for spermatogenesis. To date, however there are no known effects of nutlin-3a on reproduction. Therefore, present study was designed to investigate the effect of nutlin-3a on male fertility via UQCRC2. In this in vitro trial with mice spermatozoa, we utilized CASA, CTC staining, ATP assay, western blotting, and IVF to measure the main study outcome. The short-term exposure of spermatozoa in nutlin-3a decreases sperm motion kinematics, intracellular ATP production, capacitation, the acrosome reaction, UQCRC2, and tyrosine phosphorylation (TYP) of sperm proteins in a dose-dependent manner. Notably, the decreased UQCRC2 and TYP were associated with reduced sperm kinematics, ATP production, and capacitation, which ultimately led to adverse effects on male fertility such as poor fertilization rates and embryo development. Thus, nutlin-3a may be considered as a potential male contraceptive agent due to its ability to decrease fertility secondary to changes in overall sperm physiology and embryonic development. However, the results of this preliminary study have to be confirmed by additional independent trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号