首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert H. White 《Chirality》1996,8(4):332-340
The configuration at the C-9 of methanopterin (MPT) has been determined by comparing the circular dichroism (CD) spectra of MPT and its hydrolytic fragment, 1-[4-[[1-(2-amino-7-methyl-4-hydroxy-6-pteridinyl)-ethyl]amino]phenyl]-1-deoxy-D -ribitol (HP-1), with the CD spectra of a series of model compounds of known stereochemistry. These compounds included (S)-6-[1-(4-carboxymethylanilino)ethyl]pterin, (S-6(1-hydroxyethyl)-7-methylpterin, (S-6-(1-hydroxyethyl)pterin, (R)-6-(1-phenoxyethyl)pterin, D (+)-neopterin, and L -biopterin. From this comparison it was concluded that MPT has the R configuration at C-9 and is thus configurationally related to D (+)-neopterin, which has the S configuration at C-1. From previous work establishing the relative stereochemistry at C-6, C-7, and C-9 of N5-N10-methenyl-5,6,7,8-tetrahydromethanopterin (N5-N10-methenyl-H4MPT) as R, S, and R, respectively, it is clear that the remaining asymmetric carbons at C-6 and C-7 of H4MPT have the S and S configuration, respectively. Comparison of these latter two positions to the equivalent carbons in 5,6,7,8-tetrahydrofolate (H4folate) show that the steps involved in the biological reduction of MPT to H4MPT occur with the same stereochemical outcome as those involved in the biological reduction of folate to H4folate. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The biologically active conformation of N-(6-phenylhexanoyl)glycyl-tryptophan amide (GB-115), a highly active cholecystokinin-4 retro dipeptide analogue with the anxiolytic activity, has been studied using the conformational analysis by 1H NMR spectroscopy in solution and the method of sterically restricted analogues. A study of the relationship between the preferable conformation in solution and the anxiolytic activity in the series of GB-115 derivatives showed that the biologically active conformation of this compound is the β-turn. Based on the data on the nuclear Overhauser effect 1H NMR spectroscopy, this structure was identified as the β-turn of type II. Subsequent synthesis and study of the pharmacological activity of novel sterically restricted analogues of dipeptide GB-115: (2S)-2-{(3R)-3-[(6-phenylhexanoyl)amino]-2-oxopyrrolidine-1-yl}-3-(1H-indole-3-yl)propionic acid ethyl ester, N-(6-phenylhexanoyl)glycyl-N α-methyltryptophan ethyl ester, (2S)-2-[(10,11-dihydro-5H-dibenzo[b, f]azepin-5-ylcarbonyl)amino]-3-(1H-indole-3-yl)propionic acid methyl ester, and (2S)-2-[({3-[(ethoxycarbonyl)amino]-10,11-dihydro-5H-dibenzo[b, f]azepin-5-yl}carbonyl)amino]-3-(1H-indole-3-yl)propionic acid methyl ester confirmed that the β-turn of type II is the active conformation of GB-115.  相似文献   

3.
A new alkaloid (+)-tuberine was isolated from Haplophyllum tuberculatum. Physicochemical and spectral evidence established its structure and stereochemistry as N- benzoyl-4′-[(2″S,3″S,6″S)-(+)-7″-acetoxy-2″-hydroxy-3″,7″-dimethyl-3″,6″-epoxyoctyloxy]phenethylamine.  相似文献   

4.
(2R)-[3H]Isovaleric acid and (2S)-[3H]isovaleric acid (ammonium salts) have been synthesized. These substances, mixed with [1-14C]isovalerate, have been administered to biotin-deficient rats, which accumulate β-hydroxyisovaleric acid in their urine, the metabolite being formed via isovaleryl-CoA and β-methylcrotonyl-CoA. The results show that most of the tritium from (2R)-[3H]isovalerate was lost, and most of the tritium from (2S)-[3H]isovalerate retained in the conversion to β-hydroxyisovalerate. The stereochemistry of the isovaleryl-CoA dehydrogenase reaction is compared with the stereochemistry of other short-chain acyl-CoA dehydrogenase reactions.  相似文献   

5.
Three stereoisomeric inhibitors of Pin1: (2R,5S)-, (2S,5R)- and (2S,5S)-Ac–pSer–Ψ[(Z)CH = C]–pipecolyl(Pip)–2-(2-naphthyl)ethylamine 1, that mimic L-pSer–D-Pro, D-pSer–L-Pro, and D-pSer–D-Pro amides respectively, were synthesized by a 13-step route. The newly formed stereogenic centers in the pipecolyl ring were introduced by Luche reduction, followed by stereospecific [2,3]-Still-Wittig rearrangement. The (Z)- to (E)-alkene ratio in the rearrangements were consistently 5.5 to 1. The stereochemistry at the original Ser α-carbon controlled the stereochemistry of the Luche reduction, but it did not affect the stereochemical outcome of the rearrangement, which consistently gave the (Z)-alkene. The epimerized by-product, (2S,5S)-10, resulting from the work-up after Na/NH3 debenzylation of (2S,5R)-9, was carried on to the (2S,5S)-1 isomer. Compound (2S,5S)-10 was resynthesized from the Luche reduction by-product, (2R,3R)-3, and the stereochemistry was confirmed by comparison of the optical rotations. The IC50 values for (2R,5S)-1, (2S,5R)-1 and (2S,5S)-1 Pin1 inhibition were: 52, 85, and 140 μM, respectively.  相似文献   

6.
A comparative study of two modifications of enzymic reduction of ethyl N-{2-{4-[(2-oxo-cyclohexyl)methyl]phe- noxy}ethyl} carbamate (1), an insect juvenile hormone bioanalog, was performed using Saccharomyces cerevisiae in two bioreactors of different size, 250-ml shake-flask and 1-l fermenter. The two major products of this reduction were obtained in 45–49% (w/w) yields but with > 99% enantiomeric purity. Their absolute configurations were assigned as ethyl (1S,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (2a) and ethyl (1R,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (3a).  相似文献   

7.
Alkylation of benzyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside in N,Ndimethyl formamide with (R)-2-chloropropionic acid gave crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-carboxyethyl]-β-D-glucopyranoside. After hydrogenolysis of the benzyl group 4-O-[(S)-D-carboxyethyl]-D-glucose was obtained which lactonized very easily. Treatment of benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-carboxyethyl]-β-D-glucopyranoside with diazomethane gave cristalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(methoxycarbonyl)ethyl]-β-D-glucopyranoside, which was reduced with lithium aluminium hydride to crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(hydroxymethyl)ethyl]-β-D-glucopyranoside After hydrogenolysis of the benzyl groups 4-O-[(S)-1-(hydroxymethyl)ethyl]-D-glucose was obtained. A similar sequence of reactions was performed with (S)-2-chloropropionic acid.  相似文献   

8.
The cysteine proteases of the trypanosomatid parasitic protozoa have been validated as targets for chemotherapy of Chagas’ disease and leishmaniasis. Metal complexes of gold, platinum, iridium, palladium, rhodium and osmium have been reported to have activity against a variety of trypanosomatids, but the molecular target of these compounds has not been defined. The activity of gold(III) and palladium(II) cyclometallated complexes, and oxorhenium(V) complexes against mammalian and parasitic cysteine proteases was investigated. All gold(III) complexes (1-6) inhibited cathepsin B with IC50 values in the range of 0.2-1.4 μM. Of the six palladium compounds, aceto[2,6-bis[(butylthio-κS)methyl]phenyl-κC]-, (SP-4-3)-palladium(II) (11) was the most potent inhibitor of cathepsin B with an IC50 of 0.4 μM. A clear structure-activity relationship was observed with the oxorhenium(V) complexes with chloro[2,2′-(thio-κS)bis[ethanethiolato-κS)]] oxorhenium(V) (16) being the most potent inhibitor of cathepsin B with an IC50 of 0.009 μM. Six complexes were further tested against the parasite cysteine proteases, cruzain from T. cruzi, and cpB from L. major; the most potent inhibitors were the two rhenium complexes (2(1H)-pyridinethionato-κS2)[2,6-bis[(mercapto-κS)methyl]pyridine-κN1] oxorhenium(V) (15) and chloro[2,2′-(thio-κS)bis[ethanethiolato-κS)]] oxorhenium(V) (16). The compounds were also evaluated in assays for parasite growth. Two oxorhenium(V) compounds ((p-methoxyphenylthiolato-S)[2,6-bis[(mercapto-κS)methyl]pyridine-κN1] oxorhenium(V) (14) and (methanethiolato)[2,2′-(thio-κS)bis[ethanethiolato-κS)]] oxorhenium (V) (18)) and the palladium compound 11 inhibited T. cruzi intracellular growth, and compound 11 inhibited promastigote growth in three Leishmania species. In conclusion this preliminary data indicates that metal complexes targeted at parasite cysteine proteases show promise for the treatment of both Chagas’ disease and leishmaniasis.  相似文献   

9.
The behavior of mammalian phosphofructokinase on immobilized adenine nucleotides was investigated. Three different insolubilized ligands were compared using a pure rabbit muscle phosphofructokinase. N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose bound at least 90 times more enzyme than either N6-(6-aminohexyl)-AMP-agarose or ATP-adipic acid hydrazide-Sepharose. The elution of phosphofructokinase from the ATP-Sepharose with various metabolites and combinations of metabolites was investigated. The enzyme is eluted specifically from N6-[(6-aminohexyl)-carbamoyl]-ATP-Sepharose with a mixture of 25 μm each of fructose 6-phosphate and ADP (±Mg2+). The enzyme is not eluted either with ATP (25 μm), fructose 1,6-diphosphate (1 mm), ADP (25 μm), fructose 6-phosphate (1 mm) alone, or with a mixture of fructose 1,6-diphosphate (25 μm) and ATP (25 μm). The recovery of bound enzyme was usually greater than 90%. A mixture of glucose 6-phosphate and ADP or a mixture of IDP and fructose 6-phosphate also elutes the enzyme, but the recovery with these eluants was only about 40%. It was concluded that the “dead-end” complex is the most effective in the elution. Using this method, phosphofructokinase has been prepared in an essentially homogeneous form from muscle and brain of rabbit and rat. The overall isolation procedure involves a high speed centrifugation of crude extracts which sediments phosphofructokinase as a pellet, followed with adsorption on N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose and specific elution with the mixture of fructose 6-phosphate and ADP.  相似文献   

10.
(25S)-3-Oxocholesta-1,4-dien-26-oic acid (1) and a new (25S)-18-acetoxy-3-oxocholesta-1,4-dien-26-oic acid (2) were isolated from a soft coral Minabea sp. (cf. aldersladei) collected in North Sulawesi, Indonesia, together with two known cholic-acid-type compounds, 3-oxochol-1,4-dien-24-oic acid (3) and 3-oxochol-4-en-24-oic acid (4). The structures of these compounds were determined on the basis of their spectroscopic data. The absolute stereochemistry at C-25 of 2 was determined by comparative 1H NMR study using chiral anisotropic reagents [(S)- and (R)-phenylglycine methyl esters]. This is the first to report compound 1 as a natural product.  相似文献   

11.
(RS)-β-Ionol and (RS)-2-methyl-4-octanol were resolved by using (S)-2-methoxy-2-(1-naphthyl)propanoic acid [(S)-MαNP acid]. The specific stereochemistry of each MαNP ester was elucidated by 2D NMR analyses, and shielding by the 1-naphthyl group was observed in both the 1H- and 13C-NMR spectra. Solvolysis of the individual (S)-MαNP esters gave four single-enantiomer alcohols. The normal-phase HPLC elution order of each MαNP ester is also discussed.  相似文献   

12.
Three new fluorescent ligands derived from 2-(9-anthrylmethylamino)ethyl-appended cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) intended for future use as metal ion activated molecular receptors have been synthesised and characterised. The new ligands, 1,4,7-tris[(2″S)-acetamido-2″-(methyl-3″-phenylpropionate)]-10-(2-N-(9-anthrylmethylamino)ethyl-1,4,7,10-tetraazacyclododecane, 1,4,7-tris[(2″S)-acetamido-2″-(methyl-3″-phenylpropionate)]-10-(2-N-(9-anthrylmethylamino)ethyl-N-[(2″S)-acetamido-2″-(methyl-3″-phenylpropionate])-1,4,7,10-tetraazacyclododecane and 1,4,7-tris[2-hydroxyethyl]-10-(2-N-(9-anthrylmethylamino)ethyl)-N-(2-hydroxyethyl))-1,4,7,10-tetraazacyclododecane, provide the opportunity to investigate the consequences of alkylating the 2-(9-anthrylmethylamino)ethyl fluorophore at the anthrylamine. It was discovered that by doing this the basicity of this amine is lowered and in consequence the pH range over which the PeT induced fluorescence quenching extends is increased by about 1 pH unit. Formation constants were determined in 20% aqueous methanol for the first two ligands with Cd(II) and Cu(II). This demonstrated that alkylation of the anthrylamine significantly increases the stability of the metal complexes.  相似文献   

13.
The incorporation of (±)-coclaurine, (±)-norcoclaurine, (±)-N-methylcoclaurine and didehydro-N-methyleoclaurinium iodide into tetrandrine in Cocculus laurifolius has been studied and specific utilization of (±)-N-ethylcoclaurine demonstrated. The evidence indicates that tetrandrine is formed in the plants by oxidative dimerization of N-methylcoclaurine. Double labelling experiment with (±)-N- [14C]-methyl- [1-3H]-coclaurine demonstrated that the hydrogen atom at the asymmetric centre in the 1-benzylisoquinoline precursor is retained in the bioconversion into tetrandrine. Parallel feedings of (+)-(S)- and (?)-(R)-N-methylcoclaurines showed that the stereospecificity is maintained in the biosynthesis of tetrandrine from the 1-benzylisoquinoline precursor.  相似文献   

14.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

15.
In anaerobic or aerobic conditions in the presence of 5 mM sodium cyanide, an inhibitor of iron oxidase, cupric ion (Cu2+) was reduced enzymatically with elemental sulfur (S0) by washed intact cells of Thiobacillus ferrooxidans AP19-3 to give cuprous ion (Cu+). The rate of Cu2+ reduction was proportional to the concentrations of S0 and Cu2+ added to the reaction mixture. The pH optimum for the cupric ion-reducing system was 5.0, and the activity was completely destroyed by 10-min incubation of cells at 70°C. The activity of Cu2+ reduction with S0 by this strain was strongly inhibited by inhibitors of hydrogen sulfide: ferric ion oxidoreductase (SFORase), such as α,α′-dipyridyl, 4,5-dihydroxy-m-benzene disulfonic acid disodium salts, and diazine dicarboxylic acid bis-(N, N-dimethylamide). A SFORase purified from this strain, which catalyzes oxidation of both hydrogen sulfide and S0 with Fe3+ or Mo6+ as an electron acceptor in the presence of glutathione, catalyzed a reduction of Cu2+ by S0, and the Michaelis constant of SFORase for Cu2+ was 7.2 mM, indicating that a SFORase catalyzes the reduction of not only Fe3+ and Mo6+ but also Cu2+.  相似文献   

16.
N-(Pyren-1-yl)-(3R,4S)-4-[(1S,2R)-1,2,3-trihydroxypropyl]pyrrolidin-3-ol (4) was obtained in 36% yield from 3-deoxy-3-C-formyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (3) by combined hydrolysis and aminoalkylation reactions with 1-aminopyrene in a one-pot reaction. Cleavage reactions of the exocyclic triol chain in 4 with NaIO4 and NaBH4 resulted in iminosugars 7 and 8, which are analogues of the furanose forms of 2-deoxy-d-allose and of 2-deoxy-d-ribose, the latter analogue N-(pyren-1-yl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol (8) being formed in 83% yield.  相似文献   

17.
Some metabolites of 1-bromobutane in the rabbit and the rat   总被引:2,自引:2,他引:0  
1. Rabbits and rats dosed with 1-bromobutane excrete in urine, in addition to butylmercapturic acid, (2-hydroxybutyl)mercapturic acid, (3-hydroxybutyl)mercapturic acid and 3-(butylthio)lactic acid. 2. Although both species excrete both the hydroxybutylmercapturic acids, only traces of the 2-isomer are excreted by the rabbit. The 3-isomer has been isolated from rabbit urine as the dicyclohexylammonium salt. 3. 3-(Butylthio)lactic acid is formed more readily in the rabbit; only traces are excreted by the rat. 4. Traces of the sulphoxide of butylmercapturic acid have been found in rat urine but not in rabbit urine. 5. In the rabbit about 14% and in the rat about 22% of the dose of 1-bromobutane is excreted in the form of the hydroxymercapturic acids. 6. Slices of rat liver incubated with S-butylcysteine or butylmercapturic acid form both (2-hydroxybutyl)mercapturic acid and (3-hydroxybutyl)mercapturic acid, but only the 3-hydroxy acid is formed by slices of rabbit liver. 7. S-Butylglutathione, S-butylcysteinylglycine and S-butylcysteine are excreted in bile by rats dosed with 1-bromobutane. 8. Rabbits and rats dosed with 1,2-epoxybutane excrete (2-hydroxybutyl)mercapturic acid to the extent of about 4% and 11% of the dose respectively. 9. The following have been synthesized: N-acetyl-S-(2-hydroxybutyl)-l-cysteine [(2-hydroxybutyl)mercapturic acid] and N-acetyl-S-(3-hydroxybutyl)-l-cysteine [(3-hydroxybutyl)mercapturic acid] isolated as dicyclohexylammonium salts, N-toluene-p-sulphonyl-S-(2-hydroxybutyl)-l-cysteine, S-butylglutathione and N-acetyl-S-butylcysteinyl-glycine ethyl ester.  相似文献   

18.
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.  相似文献   

19.
The configurations of (6′R)-β,ε-carotene, (3′R,6′R)-β,ε-caroten-3′-ol (α-cryptoxanthin), (3R,3′R,6′R)-β,ε-carotene-3,3′-diol (lutein), (3R)-β,β-caroten-3-ol (β-cryptoxanthin), (3R,3′R)-β,β-carotene-3,3′-diol (zeaxanthin) and all-trans (3S,5R,6S,3′R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol (antheraxanthin) were established by CD and 1H NMR studies. The red algal carotenoids consequently possessed chiralities at each chiral center (C-3, C-5, C-6, C-3′, C-6′), corresponding to the chiralities established for the same carotenoids in higher plants. Two post mortem artifacts from Erythrotrichia carnea were assigned the chiral structures (3S,5R,8R,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8R)-mutatoxanthin] and (3S,5R,8S,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8S)-mutatoxanthin]. This is the first well documented report of a naturally occurring β,ε-caroten-3′-ol (1H NMR, CD, chemical derivatization).  相似文献   

20.
A study of the neurotropic, neuroprotective, and antioxidant action of the enantiomers and racemate of 2-[(3,7-dioxo-2,4,6,8-tetraazabicyclo[3.3.0]oct-2-yl)]-4-methylthiobutanoic acid synthesized in a stereoselective reaction of (R)-, (S)-, or (R,S)-N-carbamoylmethionine with 4,5-dihydroxyimidazolidine-2-one showed that only (+)-(S)-2-[(1S,5R)-(3,7-dioxo-2,4,6,8-tetraazabicyclo[3.3.0]oct-2-yl)]-4-methylthiobutanoic acid had neuroprotective properties. X-ray structure analysis showed that the predominating racemate of glycolurils is crystallized from aqueous solutions as a conglomerate. Antioxidant activity was not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号