首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

2.
This method describes the determination of propiomazine by direct injection of rat plasma into a chromatography system based on coupled reversed-phase columns. An extraction column, packed with porous silica particles with covalent-bound 1-acid glycoprotein (AGP), was used to separate the plasma proteins from the analyte. After isolation the analyte was transferred to the analytical column for separation and detection. Propiomazine was detected by an electrochemical detector and the limit of quantification was 2.0 ng/ml (100 pg injected). The absolute recovery was 80.9±2.4% at 9.0 ng/ml level. The inter-day and intra-day precision was 10.9% (5.6 ng/ml) and 2.8% (9.0 ng/ml), respectively.  相似文献   

3.
A high-performance liquid chromatographic method has been developed for the determination of the new podophyllotoxin derivative NK 611 in plasma samples. A solid—liquid extraction procedure with C18 extraction columns was used for extraction of plasma samples containing NK 611. The adsorbed NK 611 was eluted from the extraction columns with methanol—acetonitrile (50:50, v/v). The elution liquid was injected into a reversed-phase system consisting of a Chrompack C18 column. The mobile phase was acetonitrile—20 mM phosphate buffer, pH 7 (30:70, v/v). The UV detection mode allows sensitive determination of NK 611 in plasma within phase I trials. The limit of detection was 10 ng/ml, the limit of quantitation 35 ng/ml (for 1 ml of extracted plasma and 20-μl injection volume). The calibration curve is linear within the concentration range 100–1000 ng/ml. The recovery of NK 611 from spiked plasma samples was approximately 80%.  相似文献   

4.
A gas chromatographic-negative ion chemical ionization mass spectrometric (GC-NCI-MS) method for the determination of flumazenil in plasma is described. The GC of flumazenil (Mr 303) is considered to be difficult as it is readily adsorbed in the GC column. Therefore, preconditioning the GC column with reconstituted extract from plasma and Silyl-8 was required to cover the active sites on the column. Monitoring the maximum mass peak (m/z 275) of the flumazenil resulted in a tenfold enhancement of sensitivity and signal-to-noise ratio (concentration = 1 ng/ml). Isotopically labeled flumazenil-d3 (Mr 306, m/z 278) was used as the internal standard. The detection limit for flumazenil was found to be 0.1 ng/ml with an injection volume of 2 μl. The signal-to-noise ratio was about 10. The routine quantification limit was set at 2 ng/ml for dog plasma and 1 ng/ml for human plasma. The sample volumes in both instances were 1 ml.  相似文献   

5.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

6.
A new method for the determination of ofloxacin in human plasma was developed. Plasma proteins were precipitated with acetonitrile, the supernatant concentrated and injected into a reversed-phase C18 column. Enoxacin was used as an internal standard. The fluorimetric detection was performed at 282 nm for excitation and 450 nm for emission. Limit of quantitation was 20 ng/ml and the calibration curve was linear up to 6900 ng/ml.  相似文献   

7.
A quantitative method for the simultaneous GC resolution and detection of fluoxetine and his metabolite norfluoxetine in human plasma was developed. The procedure required 1.0 ml of plasma, extraction with a mixed organic solvent and injection into a capillary gas chromatograph with an OV-1 fused-silica column coupled to a nitrogen-phosphorus detector. The calibration curves were linear over the range 5–3000 ng/ml. The detection limits were 0.3 and 2 ng/ml for fluoxetine and norfluoxetine, respectively. The assay is suitable for routine analysis.  相似文献   

8.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane—dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography—electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a signal-to-noise ratio of > 3 and > 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

9.
We developed a sensitive and selective method for determining levels of sultopride, a neuroleptic drug of the substituted benzamide, in human plasma using high-performance liquid chromatography (HPLC) combined with UV detection and particle beam mass spectrometry (PBMS). Sutopride was extracted with tert.-butylmethyl ether using a salting-out technique. Tiapride served as an internal standard (I.S.). Sutopride and I.S. were separated by HPLC on a silica column with a mobile phase of acetonitrile-0.1 M ammonium acetate (94:6, v/v). The calibration curves were linear over the concentration range from 5 to 1000 ng/ml by HPLC with UV detection and from 10 to 1000 ng/ml with PBMS detection. The limit of quantitation was 5 ng/ml with UV detection and 10 ng/ml with PBMS detection. The absolute recovery was 92% and the within-day coefficients of variation were 2.9–7.1% at plasma concentrations from 50 to 500 ng/ml, determined by HPLC with UV detection. Using this method, we measured the plasma concentrations of sultopride with replicate analyses in four hospitalized patients and steady-state plasma levels were determined to be 161.6±30.8, 321.1±93.7, 726.5±143.1 and 1273.6±211.2 ng/ml, respectively.  相似文献   

10.
A high-performance liquid chromatographic method for the enantiospecific quantitation of S- and R-mephenytoin and its metabolites S- and R-nirvanol and S- and R-4'-hydroxymephenytoin in plasma is described. The compounds were separated using a reversed-phase C(2) column in tandem with a chiral alpha(1)-acid glycoprotein column and were detected using ultraviolet detection at 205 nm. The lower limit of quantification was 10 ng/ml for all compounds using 0.5 ml human plasma (intra-day coefficient of variation <13%, accuracy <+/-20%). The method was validated for human plasma in the concentration range 10-2000 ng/ml for each of the six compounds. The method allows for the simultaneous characterisation of the metabolic capacity of two human drug-metabolising enzymes, CYP2C19 and CYP2B6, and may be used when investigating polymorphisms or changes in activity of these two enzymes.  相似文献   

11.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

12.
An assay has been developed and validated for the routine monitoring of mivacurium in plasma. It consists of liquid-liquid extraction with dichloromethane and high-performance liquid chromatography with fluorometric detection (excitation and emission wavelengths 220 nm and 320 nm, respectively). A Spherisorb C1 5 μm column and a mobile phase containing acetonitrile, KH2PO4 and methanol are used. At a flow-rate of 1 ml/min, a concentration gradient is applied. The detection limit is approximately 1 ng/ml in plasma. For the separation of stereoisomeres, the Spherisorb SCX 10 μm column and acetonitrile-Na2SO4 as a mobile phase can be used. The assay shows good linearity over the range 1–1000 ng/ml. The accuracy and precision allows the utilisation in clinical pharmacokinetic studies.  相似文献   

13.
An improved high-performance liquid chromatographic (HPLC) method utilizing solid-phase extraction (SPE) and midbore chromatography was developed for the determination of ranitidine in human plasma. A mobile phase of 20 mM K2HPO4-acetonitrile-triethylamine (87.9:12.0:0.1, v/v) pH 6.0 was used with a phenyl analytical column and ultraviolet detection (UV). The method demonstrated linearity from 25 to 1000 ng/ml in 500 μl of plasma with a detection limit of 10 ng/ml. The method was utilized in a pharmacokinetic study evaluating the effects of pancreatico-biliary secretions on ranitidine absorption.  相似文献   

14.
A sensitive column-switching high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of propiverine in human plasma. Propiverine and internal standard, oxybutynin, were extracted from human plasma that had been made basic with 5N sodium hydroxide into methyl tert-butyl ether. The extracted plasma sample was injected onto the HPLC system consisting of a pretreatment column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The assay was linear in concentration ranges of 2-200 ng/ml for propiverine in human plasma. This method showed excellent sensitivity (a limit of detection of 0.5 ng/ml), good precision and accuracy. This method is suitable for bioequivalence studies following single dose in healthy volunteers.  相似文献   

15.
Previously reported methods for the determination of celiprolol in plasma could not be satisfactorily employed due to interference from plasma components. Thus, an improved, convenient and efficient method for the determination of the plasma concentration of celiprolol was developed using a simple solvent extraction step followed by high-performance liquid chromatography on a silanol deactivated C18 column with fluorescence detection. The plasma interference was resolved from celiprolol and the typical trailing of basic compounds on reversed-phase HPLC was eliminated. The peak-area ratio versus plasma concentration was linear over the range of 5–1000 ng/ml and the detection limit was 5 ng/ml.  相似文献   

16.
A simple high-performance liquid chromatographic (HPLC) method was developed for the determination of losartan and its E-3174 metabolite in human plasma, urine and dialysate. For plasma, a gradient mobile phase consisting of 25 mM potassium phosphate and acetonitrile pH 2.2 was used with a phenyl analytical column and fluorescence detection. For urine and dialysate, an isocratic mobile phase consisting of 25 mM potassium phosphate and acetonitrile (60:40, v/v) pH 2.2 was used. The method demonstrated linearity from 10 to 1000 ng/ml with a detection limit of 1 ng/ml for losartan and E-3174 using 10 μl of prepared plasma, urine or dialysate. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of losartan in patients with kidney failure undergoing continuous ambulatory peritoneal dialysis (CAPD).  相似文献   

17.
A fluorescence-based continuous-flow immunosensor for sensitive, precise, accurate and fast determination of paclitaxel was developed. The sensor utilizes anti-paclitaxel antibody immobilized through its Fc region and crosslinked by dimethylpimelimidate to protein A attached covalently onto the silanized inner walls of a glass capillary column followed by saturation of the paclitaxel-binding sites with rhodamine-labeled paclitaxel. The assay is based on the displacement and detection downstream of the rhodamine-labeled paclitaxel, by a flow-through spectrofluorometer, as a result of the competition with paclitaxel introduced as a pulse into the stream of carrier buffer flowing through the system. The peak height of the fluorescence intensity profile of the displaced rhodamine-labeled paclitaxel was directly proportional to the concentration of paclitaxel applied and was a function of the carrier buffer flow rate. The sensitivity of the immunosensor response ranged from 0.31 relative fluorescence units (RFU)/ng/ml at a flow rate 0.1 ml/min to 0.52 RFU/ng/ml at 1 ml/min, while the lower detection limit ranged from 1 ng/ml at 0.1 ml/min to 4 ng/ml at 1 ml/min. The immunosensor response was very reproducible (RSD=4.8%; n=10) and linear up to 100 ng/ml. The assay time ranged from 2 min at 1 ml/min to 8 min at 0.1 ml/min. A technique developed to resaturate the antigen binding sites of the immobilized antibody with rhodamine-labeled paclitaxel was successful in regenerating the capillary column without affecting its performance, thus enhancing the economic viability of the immunosensor. The immunosensor was successfully applied for the determination of paclitaxel in human plasma.  相似文献   

18.
A simple and highly sensitive normal-phase HPLC method is described for determining sertindole concentrations in human plasma using fluorimetric detection. A short C8 column was used to extract sertindole and the internal standard from plasma; the column was rinsed with acetonitrile, and the analytes were recovered by elution with methanol. This uncommon selectivity between the two solvents allowed clean extraction and near- quantitative recovery of the analytes (> 89%). Separation was done on a 5-μm silica-gel column and detection was performed by fluorimetry, with emission at 340 nm and excitation at 260 nm. The detection and lower quantifiable limits were 0.01 and 0.025 ng/ml, respectively, with no interference from plasma or potential metabolites.  相似文献   

19.
A high-performance liquid chromatographic method has been developed and tested for simultaneous extraction, elution and determination of doxorubicin and prochlorperazine content in human plasma samples. The procedure consists of extraction through a conditioned C18 solid-phase extraction cartridge, elution from a Spherisorb C8 reversed-phase column by an isocratic mobile phase (60% acetonitrile, 15% methanol and 25% buffer) followed by detection with electrochemical and fluorescence detectors. Recovery of doxorubicin and prochlorperazine from pooled human plasma samples (n=3) containing 100 ng/ml of the two drugs was 77.8±3.5% and 89.1±6.0%, respectively. The lower limits of quantitation for doxorubicin and prochlorperazine in plasma samples were 6.25 ng/ml and 10 ng/ml, respectively. A linear calibration curve was obtained for up to 2 μg/ml of doxorubicin and prochlorperazine. This combination method may be of particular value in clinical studies where phenothiazines such as prochlorperazine are used to enhance retention of doxorubicin in drug resistant tumor cells.  相似文献   

20.
Previously described methods for the determination of lometrexol in plasma used either fluorescence or ultraviolet detection. An alternative method for the determination of lometrexol utilizing electrochemical detection is described, having comparable sensitivity to fluorometric methods but no requiring pre-analytical oxidation. Following sample clean-up, separation is achieved on a phenyl column with a mobile-phase of 8% acetonitrile in 50 mM sodium acetate buffer, pH 4.0. The calibration curve in plasma is linear from 10 to 200 ng/ml, with inter- and intra-day precision of 5.4 and 5.5%, respectively. The recovery of lometrexol from plasma is 81 ± 1.5%, and the lower limit of detection is 5 ng/ml, using a signal-to-noise ratio of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号