首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The replication frequency of plasmid R1 is controlled by an unstable antisense RNA, CopA, which, by binding to its complementary target, blocks translation of the replication rate-limiting protein RepA. Since the degree of inhibition is directly correlated with the intracellular concentration of CopA, factors affecting CopA turnover can also alter plasmid copy number. We show here that PcnB (PAP I — a poly(A)polymerase of Escherichia coli  ) is such a factor. Previous studies have shown that the copy number of ColE1 is decreased in pcnB mutant strains because the stability of the RNase E processed form of RNAI, the antisense RNA regulator of ColE1 replication, is increased. We find that, analogously, the twofold reduction in R1 copy number caused by a pcnB lesion is associated with a corresponding increase in the stability of the RNase E-generated 3' cleavage product of CopA. These results suggest that CopA decay is initiated by RNase E cleavage and that PcnB is involved in the subsequent rapid decay of the 3' CopA stem-loop segment. We also find that, as predicted, under conditions in which CopA synthesis is unaffected, pcnB mutation reduces RepA translation and increases CopA stability to the same extent.  相似文献   

2.
3.
4.
5.
The translational initiation region of the mRNA for the replication initiation protein (RepA) of pMU720 is predicted to be sequestered in an inhibitory secondary structure designated stem-loop III. Activation of repA translation requires both the disruption of stem-loop III by ribosomes involved in the translation and termination of the leader peptide RepB and the formation of a pseudoknot, a tertiary RNA structure. Disruption of stem-loop III by site-directed mutagenesis was found to be insufficient to allow high repA expression in the absence of pseudoknot formation, indicating that the pseudoknot acts as an enhancer of repA translation. Furthermore, extending the length of the leader peptide RepB and changing the distance between the pseudoknot and repA Shine-Dalgarno sequence were found to have major effects on the translation of repA.  相似文献   

6.
7.
The replication frequency of plasmid R1 is regulated by an antisense RNA, CopA, which inhibits the synthesis of the rate-limiting initiator protein RepA. The inhibition requires an interaction between the antisense RNA and its target, CopT, in the leader of the RepA mRNA. This binding reaction has previously been studied in vitro, and the formation of a complete RNA duplex between the two RNAs has been demonstrated in vitro and in vivo. Here we investigate whether complete duplex formation is required for CopA-mediated inhibition in vivo. A mutated copA gene was constructed, encoding a truncated CopA which is impaired in its ability to form a complete CopA/CopT duplex, but which forms a primary binding intermediate (the 'kissing complex'). The mutated CopA species (S-CopA) mediated incompatibility against wild-type R1 plasmids and inhibited RepA-LacZ fusion protein synthesis. Northern blot, primer extension and S1 analyses indicated that S-CopA did not form a complete duplex with CopT in vivo since bands corresponding to RNase III cleavage products were missing. An in vitro analysis supported the same conclusion. These data suggest that formation of the 'kissing complex' suffices to inhibit RepA synthesis, and that complete CopA/CopT duplex formation is not required. The implications of these findings are discussed.  相似文献   

8.
9.
10.
11.
12.
Summary Five different copA copy mutants of plasmid R1 have been identified by nucleotide sequencing. Independent measurements of the activities of the mutant inhibitor RNA and of the mutant target properties were carried out using several different methods. Correlation of these measurements with the location of the nucleotide substitutions resulted in the following conclusions: (1) The copy number of plasmid R1 is controlled primarily by interaction between the CopA RNA molecule and its target, the RepA mRNA. (2) The binding of the inhibitor to its target is based on nucleotide interactions within two complementary sequences of ten nucleotides and dependent on the secondary structure of the active site. (3) The secondary structure of both the CopA target and the CopA RNA is a stem-loop structure. Mutations in the loop region interfere with binding affinity between inhibitor and target, whereas mutations in the upper stem mainly interfere with secondary structure. Mutations in the latter region create temperature-dependent copy number phenotypes.  相似文献   

13.
Antisense RNAs in prokaryotic systems often inhibit translation of mRNAs. In some cases, this involves sequestration of Shine-Dalgarno (SD) sequences and start codons. In other cases, antisense/target RNA duplexes do not overlap these signals, but form upstream. We have performed toeprinting analyses on repA mRNA of plasmid R1, both free and in duplex with the antisense RNA, CopA. An intermolecular RNA duplex 2 nt upstream of the tap SD prevents ribosome binding. An intrastrand stem-loop at this location yields the same inhibition. Thus, stable secondary structures immediately upstream of the tap SD sequence inhibit translation, as shown by toeprinting in vitro and repA-lacZ expression in vivo. Previous work showed that repA (initiator protein) expression requires tap (leader peptide) translation. Toeprinting data confirm that the tap ribosome binding site (RBS) is accessible, whereas the repA RBS, which is sequestered by a stable stem-loop, is weakly recognized by the ribosome. Truncated CopA RNA (CopI) is unable to pair completely with target RNA, but proceeds normally to a kissing intermediate. This mutant RNA species inhibits repA expression in vivo. By a kinetic toeprint inhibition protocol, we have shown that the structure of the kissing complex is sufficient to sterically prevent ribosome binding. These results are discussed in comparison with the effect of RNA structures elsewhere in the ribosome-binding region of an mRNA.  相似文献   

14.
15.
The RepA protein of plasmid R1 is rate-limiting for initiation of R1 replication. Its synthesis is mainly regulated by interactions of the antisense RNA, CopA, with the leader region of the RepA mRNA, CopT. This work describes the characterization of several mutants with sequence alterations in the intergenic region between the copA gene and the repA reading frame. The analysis showed that most of the mutations led both to a decrease in stability of maintenance of mini-R1 derivatives and to lowered repA expression assayed in translational repA-lacZ fusion constructs. Destruction of the copA gene and replacement of the upstream region by the tac promoter in the latter constructs indicated that these mutations per se alter the expression of repA. In addition, we show that particular mutations in this region can directly affect CopA-mediated control, either by changing the kinetics of interaction of CopA RNA with the RepA mRNA and/or by modifying the activity of the copA promoter. These data indicate the importance of the region analysed in the process that controls R1 replication.  相似文献   

16.
Summary Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed.  相似文献   

17.
Replication of the IncB miniplasmid pMU720 is dependent on the expression of repA, the gene encoding replication initiator protein RepA. Binding of a small antisense RNA (RNAI) to its complementary target (stem-loop I [SLI]) in the RepA mRNA prevents the participation of SLI in the formation of a pseudoknot that is an enhancer of translation of this mRNA. Thus, RNAI regulates the frequency of replication of pMU720 by controlling the efficiency of translation of the RepA mRNA. Mutational analysis of the two seven-base complementary sequences involved in formation of the pseudoknot showed that only the five central bases of each were critical for the formation of the pseudoknot. Physical analysis of SLI showed that despite the complete complementarity of its sequence to that of RNAI, the structures of the two molecules are different. The most prominent difference between the two structures is the presence of a 4-base internal loop immediately below the hairpin loop of SLI but not that of RNAI. Closure of this internal loop in SLI resulted in a 40-fold reduction in repA expression and loss of sensitivity of the residual expression to inhibition by RNAI. By contrast, repA expression was largely unaffected by the closure of a lower internal loop whose presence in SLI and RNAI is essential for effective interaction between these two molecules. These results suggest that the interaction of SLI with the distal pseudoknot bases is fundamentally different from the RNAI-SLI binding interaction and that the differences in structure between RNAI and SLI are necessary to allow SLI to be able to efficiently bind RNAI and to participate in pseudoknot formation.  相似文献   

18.
The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA-CopT complex is characterized by a four-way junction structure and a side-by-side alignment of two long intramolecular helices. The significance of this structure for binding in vitro and control in vivo was tested by mutations in both CopA and CopT. High rates of stable complex formation in vitro and efficient inhibition in vivo required initial loop-loop complexes to be rapidly converted to extended interactions. These interactions involve asymmetric helix progression and melting of the upper stems of both RNAs to promote the formation of two intermolecular helices. Data presented here delineate the boundaries of these helices and emphasize the need for unimpeded helix propagation. This process is directional, i.e. one of the two intermolecular helices (B) must form first to allow formation of the other (B'). A binding pathway, characterized by a hierarchy of intermediates leading to an irreversible and inhibitory RNA-RNA complex, is proposed.  相似文献   

19.
In several groups of bacterial plasmids, antisense RNAs regulate copy number through inhibition of replication initiator protein synthesis. These RNAs are characterized by a long hairpin structure interrupted by several unpaired residues or bulged loops. In plasmid R1, the inhibitory complex between the antisense RNA (CopA) and its target mRNA (CopT) is characterized by a four-way junction structure and a side-by-side helical alignment. This topology facilitates the formation of a stabilizer intermolecular helix between distal regions of both RNAs, essential for in vivo control. The bulged residues in CopA/CopT were shown to be required for high in vitro binding rate and in vivo activity. This study addresses the question of why removal of bulged nucleotides blocks stable complex formation. Structure mapping, modification interference, and molecular modeling of bulged-less mutant CopA–CopT complexes suggests that, subsequent to loop–loop contact, helix propagation is prevented. Instead, a fully base paired loop–loop interaction is formed, inducing a continuous stacking of three helices. Consequently, the stabilizer helix cannot be formed, and stable complex formation is blocked. In contrast to the four-way junction topology, the loop–loop interaction alone failed to prevent ribosome binding at its loading site and, thus, inhibition of RepA translation was alleviated.  相似文献   

20.
Replication of the IncL/M plasmid pMU604 is controlled by a small antisense RNA molecule (RNAI), which, by inhibiting the formation of an RNA pseudoknot, regulates translation of the replication initiator protein, RepA. Efficient translation of the repA mRNA was shown to require the translation and correct termination of the leader peptide, RepB, and the formation of the pseudoknot. Although the pseudoknot was essential for the expression of repA, its presence was shown to interfere with the translation of repB. The requirement for pseudoknot formation could in large part be obviated by improving the ribosome binding region of repA, either by replacing the GUG start codon by AUG or by increasing the spacing between the start codon and the Shine-Dalgarno sequence (SD). The spacing between the distal pseudoknot sequence and the repA SD was shown to be suboptimal for maximal expression of repA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号