首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to methicillin was transduced by phage 80 or 53 from two naturally occurring methicillin-resistant strains of Staphylococcus aureus to methicillin-susceptible recipient strains at frequencies of 10−7 to 10−9. Ultraviolet irradiation of transducing phage and posttransductional incubation at 30 C were essential for useful frequencies of transduction. Effectiveness as a recipient for this transduction was highly specific. Strain NCTC 8325 (PS47) in its native state was an ineffective recipient but became effective after it had received by transduction one of several penicillinase plasmids. This acquired effectiveness was retained in most cases after elimination of the plasmid by ethidium bromide treatment. Like the donor strain, the progeny were heterogeneous in the degree of their resistance to methicillin, which was expressed by a higher proportion of cells as the temperature of incubation was lowered from 37 to 30 C. Separate transductants varied widely in the degree of resistance acquired by transduction. Methicillin resistance was stable in the donor and transductant strains. We favored the interpretation that methicillin resistance in our strains was determined by a single chromosomal gene, although the possibility that it was determined by two or more closely linked genes could not be excluded.  相似文献   

2.
Summary Mutant penicillinase plasmids, in which penicillinase synthesis is not inducible by penicillin or a penicillin analogue, were examined by biochemical and genetic analyses. In five of the six mutants tested, penicillinase synthesis could be induced by growth in the presence of 5-methyltryptophan. It is known that the tryptophan analogue 5-methyltryptophan is readily incorporated into protein by S. aureus and that staphylococcal penicillinase lacks tryptophan. 5-methyltryptophan seems to induce penicillinase synthesis in wild-type plasmids by becoming incorporated into the repressor and thereby inactivating the operator binding function of the penicillinase repressor. Therefore, induction of penicillinase synthesis in the mutant plasmids by 5-methyltryptophan strongly suggests that the noninducible phenotype of these five plasmids is due to a mutation that inactivates the effector binding site of the penicillinase repressor (i.e., the five mutant plasmids carry an is genotype for the penicillinase repressor). This conclusion was supported by heterodiploid analysis. The mutant plasmid that did not respond to 5-methyltryptophan either produces an exceedingly low basal level of penicillinase or does not produce active enzyme. This plasmid seems to carry a mutation in the penicillinase structural gene or in the promoter for the structural gene. Thus, a genetic characterization of many mutations in the penicillinase operon can be accomplished easily and rapidly by biochemical analysis.Journal Paper No. J-7994 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2029  相似文献   

3.
Summary Four noninducible staphylococcal penicillinase plasmids reported to produce a very low basal level of penicillinase were investigated. Incorporation of 5-methyltryptophan, which is known to inactivate the operator binding site of wild-type penicillinase repressor and thereby elicit penicillinase synthesis, did not induce penicillinase synthesis in any of these micro mutants. Therefore, these plasmids are not simply peni S mutants. Heterodiploid strains composed of a plasmid fully constitutive for penicillinase synthesis and one of the various micro penicillinase plasmids were constructed. Three of these heterodiploids produce a normal basal level of penicillinase and are inducible by 5-methyltryptophan but not by the standard gratuitous penicillinase inducer. Therefore, each of these three noninducible micro plasmids produces a peni S repressor, but in addition, each must bear a mutation in the penZ region. The fourth heterodiploid produces a fully constitutive level of penicillinase. The noninducible micro plasmid present in this heterodiploid must contain a penI mutation and a mutation in the penZ region. Consequently, each of these four noninducible micro plasmids contains at least two mutants genes. Hence, the phenotype of noninducibility plus low basal penicillinase is not due to a point mutation in a second penicillinase regulatory region as has been proposed. Instead, these results strongly suggest that there is only one penicillinase regulatory gene located on the penicillinase plasmid and that this gene (penI) specifies the penicillinase repressor.Journal Paper No. J-8700 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa; Project No. 2029  相似文献   

4.
In mixed cultures of staphylococci a transfer of the resistance to methicillin and penicillinase plasmids as well as tetracycline and chloramphenicol plasmids was investigated. It was shown that the resistance to methicillin was transferred in mixed cultures from one strain of S. aureus to another and from S. epidermidis to S. aureus. In both cases transfer of methicillin resistance required, the presence of penicillinase plasmid in recipient or donor strain. In the case of other markers transmission was independent. Moreover it was shown that the transfer of resistance genes in mixed cultures was mediated by bacteriophage of the serologic group A.  相似文献   

5.
6.
Previously described penicillinase-constitutive mutations in Staphylococcus aureus are caused by genetic lesions in a regulator gene (or genes) on the penicillinase plasmid in close linkage to the structural gene. This report describes a new class (R2(-)) of penicillinase-constitutive mutants of S. aureus unlinked to the plasmid. By transductional analysis, the penicillinase plasmids in these mutants were wild type. Wild-type plasmids transduced into penicillinase-negative (plasmid loss) derivatives of R2(-) mutants produced penicillinase constitutively in amounts comparable to a fully induced culture of the wild-type strain. Penicillinase production in R2(-) mutants was maximal at 30 to 32 C and was much reduced at 40 C.  相似文献   

7.
Naturally Occurring Penicillinase Plasmids in Staphylococcus aureus   总被引:16,自引:11,他引:16       下载免费PDF全文
A series of plasmids harbored by naturally occurring penicillin-resistant strains of Staphylococcus aureus were surveyed with a view toward exploring the variability in plasmid-linked marker patterns. Plasmids were transduced from their natural hosts to either of two plasmid-negative laboratory strains by selection for cadmium resistance, and the transductants were tested for all other markers previously found to be plasmid-linked. All of the strains that were able to serve as genetic donors to one of the two stock strains could donate cadmium and lead resistance as linked, plasmid-borne markers. Among the other plasmid markers, a wide variety of patterns was found, including four plasmids that did not carry the penicillinase determinant. Each of the 26 plasmids studied, including the latter 4, was found to belong to one of the two incompatibility sets of penicillinase plasmids previously identified. With the exception of the penicillinase-negative plasmids, which were found in both sets, all the plasmids of incompatibility set I directed the production of penicillinase type A; those belonging to set II directed either type A or type C. Those of set II without exception increased the sensitivity of their host strains to bismuth ion; those of set I carried determinants of bismuth resistance or did not affect the sensitivity of their host to this ion. No other perfect correlations between markers were encountered; in particular, there was no correlation between penicillinase serotype and the excretion of the enzyme. This finding allows the prediction that there is, in addition to all of the markers thus far identified, a plasmid-linked determinant of penicillinase excretion.  相似文献   

8.

Background

The study was conducted between 2000 and 2003 on 750 human subjects, yielding 850 strains of staphylococci from clinical specimens (575), nasal cultures of hospitalized patients (100) and eye & nasal sources of hospital workers (50 & 125 respectively) in order to determine their epidemiology, acquisition and dissemination of resistance genes.

Methods

Organisms from clinical samples were isolated, cultured and identified as per the standard routine procedures. Susceptibility was measured by the agar diffusion method, as recommended by the Nat ional Committee for Clinical Laboratory Standards (NCCLS). The modified method of Birnboin and Takahashi was used for isolation of plasmids from staphylococci. Pulsed-field gel electrophoresis (PFGE) typing of clinical and carrier Methicillin resistant Staphylococcus aureus (MRSA) strains isolated during our study was performed as described previously.

Results

It was shown that 35.1% of Staphylococcus aureus and 22.5% of coagulase-negative staphylococcal isolates were resistant to methicillin. Highest percentage of MRSA (35.5%) was found in pus specimens (n = 151). The multiple drug resistance of all MRSA (n = 180) and Methicillin resistant Coagulase-negative Staphylococcus aureus (MRCNS) (n = 76) isolates was detected. In case of both methicillin-resistant as well as methicillin-sensitive Saphylococcal isolates zero resistance was found to vancomycin where as highest resistance was found to penicillin G followed by ampicillin. It was shown that the major reservoir of methicillin resistant staphylococci in hospitals are colonized/infected inpatients and colonized hospital workers, with carriers at risk for developing endogenous infection or transmitting infection to health care workers and patients. The results were confirmed by molecular typing using PFGE by SmaI-digestion. It was shown that the resistant markers G and T got transferred from clinical S. aureus (JS-105) to carrier S. aureus (JN-49) and the ciprofloxacin (Cf) and erythromycin (E) resistance seemed to be chromosomal mediated. In one of the experiments, plasmid pJMR1O from Staphylococcus aureus coding for ampicillin (A), gentamicin (G) and amikacin (Ak) resistance was transformed into Escherichia coli. The minimal inhibitory concentrations (MICs) for A and G were lower in E. coli than in S. aureus. However, the MIC for Ak was higher in E. coli transformants than in S. aureus.

Conclusion

There is a progressive increase in MRSA prevalence and multi-drug resistance in staphylococci. Vancomycin is still the drug of choice for MRSA infections. The major reservoir of methicillin resistant staphylococci in hospitals is colonized/infected inpatients and colonized hospital workers. Resistance transfer from staphylococci to E. coli as well as from clinical to carrier staphylococci due to antibiotic stress seemed to be an alarming threat to antimicrobial chemotherapy.  相似文献   

9.
Increasing reports of multidrug resistance conferred by conjugative plasmids of Enterobacteriaceae necessitate a better understanding of their evolution. One such group is the narrow-host-range IncI1 plasmid type, known for their ability to carry genes encoding resistance to extended-spectrum beta lactamases. The focus of this study was to perform comparative sequencing of IncI1 plasmids from porcine enterotoxigenic Escherichia coli (ETEC), isolated irrespective of antimicrobial susceptibility phenotype. Five IncI1 plasmids of porcine ETEC origin and one IncI1 plasmid from a Salmonella enterica serovar Kentucky isolate from a healthy broiler chicken were sequenced and compared to existing IncI1 plasmid sequences in an effort to better understand the overall genetic composition of the IncI1 plasmid lineages. Overall, the sequenced porcine ETEC IncI1 plasmids were divergent from other sequenced IncI1 plasmids based upon multiple means of inferred phylogeny. High occurrences of IncI1 and IncA/C plasmid-associated genes and the blaTEM and blaCMY-2 beta lactamase genes were observed among porcine ETEC. However, the presence of blaTEM and blaCMY-2 did not strongly correlate with IncI1 plasmid possession, suggesting that these plasmids in porcine ETEC are not primarily associated with the carriage of such resistance genes. Overall, this work suggests a conservation of the IncI1 plasmid backbone among sequenced plasmids with a single locus for the acquisition of accessory genes, such as those associated with antimicrobial resistance. Furthermore, the high occurrence of IncI1 and IncA/C plasmids among clinical E. coli from commercial swine facilities is indicative of extensive horizontal gene transfer among porcine ETEC.  相似文献   

10.
The IncX family of plasmids has recently been expanded to include at least four subtypes, IncX1–IncX4. The revised classification provides an opportunity for improving our understanding of the sequence diversity of the IncX plasmids and the resistance genes they carried. We described the complete nucleotide sequence of a novel IncX3 plasmid, pKPC-NY79 (42,447 bp) from a sequence-type 258 Klebsiella pneumoniae strain that was isolated from a patient who was hospitalized in New York, United States. In pKPC-NY79, the plasmid scaffold and genetic load region were highly similar to homologous regions in pIncX-SHV (IncX3, JN247852) and the bla KPC carrying pKpQIL (IncFIIk, GU595196), respectively, indicating that it has possibly arisen through recombination of plasmids. The bla KPC-2 gene, as part of a transposon Tn4401a, was found within the genetic load region. The backbone of pKPC-NY79 differs from pIncX-SHV by a deletion involving the gene tandem hnstopB (encoding H-NS protein and topoisomerase III, respectively) and a putative ATPase gene. Unexpectedly, the impact of the hnstopB deletion on host fitness and plasmid stability was found to be small. In conclusion, the findings contribute to a better understanding of the plasmid platforms carrying bla KPC and of variations in the backbone of the IncX3 plasmids.  相似文献   

11.
12.
We isolated a transposon (Tn4291) that carries the resistance gene(s) for methicillin in a secondary insertion site on the penicillinase plasmid pI524. Transposition of Tn4291 into pI524 occurred during the transduction of the tetracycline resistance plasmid pSN1 from a methicillin-resistant donor into a recipient that carried the mec allele in the primary site on the chromosome. Insertion of Tn4291 caused extensive rearrangement of pI524 and resulted in the formation of a 27.9-kilobase-pair plasmid (pIT103) which coded for resistance to methicillin and cadmium, but not penicillin. Although resistance to methicillin and cadmium were always linked, Tn4291 was stably maintained only in the presence of a chromosomal mec allele, while in its absence the plasmid was unstable and transposition to the primary site occurred. Subsequently, a 20.1-kilobase-pair plasmid, pIT203, was formed which retained cadmium resistance and regained the ability to express beta-lactamase activity.  相似文献   

13.
The thyA gene of Escherichia coli, which directs the synthesis of the enzyme thymidylate synthetase, has been subcloned from a recombinant λ phage (Hickson et al., 1982) into the multicopy plasmid pBR325 to give the plasmid pPE245. To identify the thyA gene product, the transposon Tn1000 was inserted into pPE245 and derivative plasmids isolated that were no longer able to complement thyA mutations. When proteins synthesised by these plasmids and by pPE245 were labelled and analysed on SDS-polyacrylamide gels a protein of 33000 Mr, presumably the thyA+ gene product was absent whenever the thyA gene was inactivated. On assaying cell extracts prepared from cells harbouring pPE245 for thymidylate synthetase, the level of this enzyme was found to be elevated by a factor of at least 25.  相似文献   

14.
15.
The localization of the gene(s) mediating methicillin (mecr) in Staphylococcus aureus was determined by transformation with deoxyribonucleic acid (DNA) from a natural mecr strain (DU 4916) and transformation obtained with DNA from this strain. Streptomycin resistance genes (strr) and novobiocin resistance genes (novr) were used concurrently as representatives for chromosomal genes; penicillinase (PI254) and tetracycline plasmids were used as examples of medium- and small-size extrachromosomal genes, respectively. Superinfection of the lysogenic recipients with the competence-inducing phage phi11 or 83A enhanced transformation for all markers. Phenotypic expression of cadmium (cadr), tetracycline (tetr), or methicillin resistance (mecr) did not appear to require a host recombination system since a recA1 mutant could serve as the recipient provided it was superinfected with a competence-inducing phage. There was, furthermore, no requirement for preexisting plasmids for phenotypic expression. Ultraviolet irradiation of transforming DNA enhanced at low doses the transformation frequency for chromosomal genes strr and novr but not for mecr, cadr, or tetr. The gene(s) for mecr was transformed with chromosomal DNA after sodium dodecyl sulfate-sodium chloride extraction and after neutral sucrose gradient centrifugation of bulk DNA from wild-type strain DU 4916 and the transformats. No cavalently closed circular DNA or open circular DNA carrying the methicillin resistance gene(s) could be detected in the wild type or the transformants either by ethidium bromide-cesium chloride gradient centrifugation or by zonal rate centrifugation of cells directly lysed on top of the gradients. The mecr gene(s) is thus probably of chromosomal nature but possibly under recombinational control of phage genes, since transfer of mecr is independent of the recA1 gene(s) but can be accomplished in this strain after superinfection with a competence-inducing phage. Ultraviolet light inactivation of transforming DNA shows first-order kinetics for mecr transformability similar to that observed for both transfecting and plasmid DNA.  相似文献   

16.
Genetic analysis and molecular characterization of plasmid deoxyribonucleic acid (DNA) was performed in a toxigenic isolate of Staphylococcus aureus strain DU4916. Elimination, transduction, and transformation experiments provided us with a series of derivatives similar except for the presence or absence of genes mediating resistance to penicillin (penr), methicillin (mecr), and tetracycline (tetr) and enterotoxin type B (SEB) production (entB+). The derivatives were examined for the presence of a plasmid species which encodes for SEB production. Two distinct species of covalently closed circular DNA of about 2.8 X 10(6) and 0.75 X 10(6) daltons were identified in an ethidium bromide-cured, penicillinase-negative (pens) isolate, SN109 (mecr tetr emtB+). Further segregation of either methicillin resistance or tetracycline resistance or of both together resulted in the loss of SEB production and the disappearance of both plasmids. Transduction from strain SN109 showed that determinants for tetracycline resistance are carried by the 2.8 X 10(6) dalton plasmid. Transformation with covalently closed circular DNA from strain SN109 yielded mecs tetr entB- transformants harboring the tetracycline resistance plasmid alone and mecr tetr entB+ transformants harboring both the tetracycline resistance and the 0.75 X 10(6)-dalton plasmid. Further segregation of methicillin resistance in transformants was not associated with any change in plasmid DNA. The results indicate that a genetic determinant for SEB production is carried by the 0.75 X 10(6)-dalton plasmid. It is possible, however, that this plasmid cannot be maintained in the host independently from the tetracycline resistance plasmid. Methicillin resistance in the strains examined could not be ascribed to any of the covalently closed circular DNA components resolved in strain DU4916.  相似文献   

17.
Temperature-sensitive (TS) plasmids were generated through chemical mutagenesis of a derivative of the streptomycin resistance parent plasmid pD70, isolated from Mannheimia hemolytica serotype 1. Three TS plasmids which failed to replicate at or above 42°C in M. hemolytica but which were fully functional below 31°C were selected for further analysis. Two of the TS plasmids were shown by sequencing to possess unique single-base-pair mutations. The third TS plasmid contained a unique base pair substitution and a second mutation that had been previously identified. These mutations were clustered within a 200-bp region of the presumed plasmid origin of replication. Site-directed single-nucleotide substitutions were introduced into the wild-type pD70 origin of replication to confirm that mutations identified by sequencing had conferred thermoregulated replication. Deletion analysis on the wild-type pD70 plasmid replicon revealed that approximately 720 bp are necessary for plasmid maintenance. Replication of the TS plasmids was thermoregulated in Pasteurella multocida and Haemophilus somnus as well. To consistently transform H. somnus with TS plasmid, in vitro DNA methylation with commercially available HhaI methyltransferase was necessary to protect against the organism's restriction enzyme HsoI (recognition sequence 5′-GCGC-3′) characterized herein.  相似文献   

18.
A plasmid is described for Bacillus subtilis that facilitates replacement of the widely used neomycin resistance gene (neo) with a spectinomycin resistance (spcE) gene. A second plasmid is described that facilitates replacement of spcS, associated with mini-Tn10 mutagenesis in B. subtilis, with neo. These plasmids can also function as integrative vectors for B. subtilis. They expand the scope of strain construction and gene analysis in B. subtilis.  相似文献   

19.
Additional DNA was shown to be present in methicillin-resistant Staphylococcus aureus by one- and two-dimensional restriction endonuclease analyses of the chromosomal DNA. A 3.5-kilobase Bg/II fragment, which was present in methicillin-resistant strains but not in the isogenic methicillin-sensitive parental strain, was cloned into newly constructed plasmid pWDB1 in Escherichia coli. Hybridization of this 3.5-kilobase Bg/II fragment with different methicillin-sensitive and methicillin-resistant S. aureus clinical isolates indicated that the fragment represents part of the methicillin resistance determinant (mec). In addition, the fragment carries a sequence that is present in some large staphylococcal plasmids, as well as in penicillinase plasmid pI524.  相似文献   

20.
The streptococcal plasmid pMV158 replicates by the rolling-circle mechanism. One feature of this replication mechanism is the generation of single-stranded DNA intermediates which are converted to double-stranded molecules. Lagging-strand synthesis initiates from the plasmid single-stranded origin, sso. We have used the pMV158-derivative plasmid pLS1 (containing the ssoA type of lagging-strand origin) and a set of pLS1 derivatives with mutations in two conserved regions of the ssoA (the recombination site B [RSB] and a conserved 6-nucleotide sequence [CS-6]) to identify sequences important for plasmid lagging-strand replication in Streptococcus pneumoniae. Cells containing plasmids with mutations in the RSB accumulated 30-fold more single-stranded DNA than cells containing plasmids with mutations in the CS-6 sequence. Specificity of lagging-strand synthesis was tested by the development of a new in vitro replication system with pneumococcal cell extracts. Four major initiation sites of lagging-strand DNA synthesis were observed. The specificity of initiation was maintained in plasmids with mutations in the CS-6 region. Mutations in the RSB region, on the other hand, resulted in the loss of specific initiation of lagging-strand synthesis and also severely reduced the efficiency of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号