首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor protein-tyrosine phosphatase PTPmu is a member of the Ig superfamily of cell adhesion molecules. The extracellular domain of PTPmu contains motifs commonly found in cell adhesion molecules. The intracellular domain of PTPmu contains two conserved catalytic domains, only the membrane-proximal domain has catalytic activity. The unique features of PTPmu make it an attractive molecule to transduce signals upon cell-cell contact. PTPmu has been shown to regulate cadherin-mediated cell adhesion, neurite outgrowth, and axon guidance. Protein kinase C is a component of the PTPmu signaling pathway utilized to regulate these events. To aid in the further characterization of PTPmu signaling pathways, we used a series of GST-PTPmu fusion proteins, including catalytically inactive and substrate trapping mutants, to identify PTPmu-interacting proteins. We identified IQGAP1, a known regulator of the Rho GTPases, Cdc42 and Rac1, as a novel PTPmu-interacting protein. We show that this interaction is due to direct binding. In addition, we demonstrate that amino acid residues 765-958 of PTPmu, which include the juxtamembrane domain and 35 residues of the first phosphatase domain, mediate the binding to IQGAP1. Furthermore, we demonstrate that constitutively active Cdc42, and to a lesser extent Rac1, enhances the interaction of PTPmu and IQGAP1. These data indicate PTPmu may regulate Rho-GTPase-dependent functions of IQGAP1 and suggest that IQGAP1 is a component of the PTPmu signaling pathway. In support of this, we show that a peptide that competes IQGAP1 binding to Rho GTPases blocks PTPmu-mediated neurite outgrowth.  相似文献   

2.
Protein of regenerating liver (PRL)-1, -2, and -3 comprise a subgroup of closely related protein-tyrosine phosphatases featuring a C-terminal prenylation motif conforming to either the consensus sequence for farnesylation, CAAX, or geranylgeranylation, CCXX. Yeast two-hybrid screening for PRL-2-interacting proteins identified the beta-subunit of Rab geranylgeranyltransferase II (betaGGT II). The specific interaction of betaGGT II with PRL-2 but not with PRL-1 or -3 occurred in yeast and HeLa cells. Chimeric PRL-1/-2 molecules were tested for their interaction with betaGGT II, and revealed that the C-terminal region of PRL-2 is required for interaction, possibly the PRL variable region immediately preceeding the CAAX box. Additionally, PRL-2 prenylation is prequisite for betaGGT II binding. As prenylated PRL-2 is localized to the early endosome, we propose that this is where the interaction occurs. PRL-2 is not a substrate for betaGGT II, as isoprenoid analysis showed that PRL-2 was solely farnesylated in vivo. Co-expression of the alpha-subunit (alpha) of GGT II, betaGGT II, and PRL-2 resulted in alpha/betaGGT II heterodimer formation and prevented PRL-2 binding. Expression of PRL-2 alone inhibited the endogenous alpha/betaGGT II activity in HeLa cells. Together, these results indicate that the binding of alphaGGT II and PRL-2 to betaGGT II is mutually exclusive, and suggest that PRL-2 may function as a regulator of GGT II activity.  相似文献   

3.
PRL-1 is a particularly interesting immediate-early gene because it is induced in mitogen-stimulated cells and regenerating liver but is constitutively expressed in insulin-treated rat H35 hepatoma cells, which otherwise show normal regulation of immediate-early genes. PRL-1 is expressed throughout the course of hepatic regeneration, and its expression is elevated in a number of tumor cell lines. Sequence analysis reveals that PRL-1 encodes a 20-kDa protein with an eight-amino-acid consensus protein tyrosine phosphatase (PTPase) active site. PRL-1 is able to dephosphorylate phosphotyrosine substrates, and mutation of the active-site cysteine residue abolishes this activity. As PRL-1 has no homology to other PTPases outside the active site, it is a new type of PTPase. PRL-1 is located primarily in the cell nucleus. Stably transfected cells which overexpress PRL-1 demonstrate altered cellular growth and morphology and a transformed phenotype. It appears that PRL-1 is important in normal cellular growth control and could contribute to the tumorigenicity of some cancer cells.  相似文献   

4.
5.
The S-locus F-box (SLF/SFB) protein, recently identified as the pollen determinant of S-RNase-based self-incompatibility (SI) in Solanaceae, Scrophulariaceae and Rosaceae, has been proposed to serve as the subunit of an SCF (SKP1-CUL1-F-box) ubiquitin ligase and to target its pistil counterpart S-RNase during the SI response. However, the underlying mechanism is still in dispute, and the putative SLF-binding SKP1-equivalent protein remains unknown. Here, we report the identification of AhSSK1, Antirrhinum hispanicumSLF-interacting SKP1-like1, using a yeast two-hybrid screen against a pollen cDNA library. GST pull-down assays confirmed the SSK1-SLF interaction, and showed that AhSSK1 could connect AhSLF to a CUL1-like protein. AhSSK1, despite having a similar secondary structure to other SKP1-like proteins, appeared quite distinctive in sequence and unique in a phylogenetic analysis, in which no SSK1 ortholog could be predicted in the sequenced genomes of Arabidopsis and rice. Thus, our results suggest that the pollen-specific SSK1 could be recruited exclusively as the adaptor of putative SCF(SLF) in those plants with S-RNase-based SI, providing an important clue to dissecting the function of the pollen determinant.  相似文献   

6.
Actin-related proteins (Arps) were recently shown to contribute to the organization and regulation of chromatin structures. The nuclear functions of Arps have been investigated principally in budding yeast in which six of the ten Arp subfamilies are localized in the nucleus. In vertebrates, only two isoforms of Arp4 have so far been identified as showing localization to the nucleus. Here we show the predominant nuclear localization of another Arp subfamily, Arp6, in vertebrate cells. Vertebrate Arp6 directly interacted with heterochromatin protein 1 (HP1) orthologs and the two proteins colocalized in pericentric heterochromatin. Yeast Arp6 is involved in telomere silencing, while Drosophila Arp6 is localized in the pericentric heterochromatin. Our data strongly suggest that Arp6 has an evolutionarily conserved role in heterochromatin formation and also provide new insights into the molecular organization of heterochromatin.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.  相似文献   

8.
The ERM proteins (ezrin, radixin, moesin) together with merlin comprise a subgroup of the band 4.1 superfamily. These proteins act as membrane cytoskeletal linker proteins mediating interactions between the cytoplasmic domains of transmembrane proteins and actin. To better understand how the ERM proteins function to regulate these junctional complexes, a yeast 2-hybrid screen was undertaken using ezrin as a bait. We describe here the identification and cloning of a novel protein, PACE-1, which binds to the C-terminal domain of ezrin. Characterization of PACE-1 in human breast cancer cell lines demonstrates it to have two distinct intracellular localizations. A proportion of the protein is associated with the cytoplasmic face of the Golgi apparatus. This distribution is dependent upon the presence of the PACE-1 N-terminal myristoylation consensus sequence but is not dependent on an association with ezrin. In contrast, PACE-1 colocalises with ezrin in the lamellipodia, where ezrin has a role in cell spreading and motility. A notable feature of PACE-1 is the presence of a putative N-terminal kinase domain; however, in biochemical assays PACE-1 was shown to have associated rather than intrinsic kinase activity. Together these data suggest that PACE-1 may play a role in regulating cell adhesion/migration complexes in migrating cells.  相似文献   

9.
Sanz P  Ludin K  Carlson M 《Genetics》2000,154(1):99-107
The Snf1 protein kinase is an essential component of the glucose starvation signalling pathway in Saccharomyces cerevisiae. We have used the two-hybrid system to identify a new protein, Sip5, that interacts with the Snf1 kinase complex in response to glucose limitation. Coimmunoprecipitation studies confirmed the association of Sip5 and Snf1 in cell extracts. We found that Sip5 also interacts strongly with Reg1, the regulatory subunit of the Reg1/Glc7 protein phosphatase 1 complex, in both two-hybrid and coimmunoprecipitation assays. Previous work showed that Reg1/Glc7 interacts with the Snf1 kinase under glucose-limiting conditions and negatively regulates its activity. Sip5 is the first protein that has been shown to interact with both Snf1 and Reg1/Glc7. Genetic analysis showed that the two-hybrid interaction between Reg1 and Snf1 is reduced threefold in a sip5Delta mutant. These findings suggest that Sip5 facilitates the interaction between the Reg1/Glc7 phosphatase and the Snf1 kinase.  相似文献   

10.
Protein-protein interactions play an important role in the specificity of cellular signaling cascades. By using the yeast two-hybrid system, a specific interaction was identified between the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E and a novel protein, which was termed ZRP-1 to indicate its sequence similarity to the Zyxin protein family. The mRNA encoding this protein is distributed widely in human tissues and contains an open reading frame of 1428 base pairs, predicting a polypeptide of 476 amino acid residues. The deduced protein displays a proline-rich amino-terminal region and three double zinc finger LIM domains at its carboxyl terminus. The specific interaction of this novel protein with the second PDZ domain of hPTP1E was demonstrated both in vitro, using bacterially expressed proteins, and in vivo, by co-immunoprecipitation studies. Deletion analysis indicated that an intact carboxyl terminus is required for its interaction with the second PDZ domain of hPTP1E in the yeast two-hybrid system and suggested that other sequences, including the LIM domains, also participate in the interaction. The genomic organization of the ZRP-1 coding sequence is identical to that of the lipoma preferred partner gene, another Zyxin-related protein, suggesting that the two genes have evolved from a recent gene duplication event.  相似文献   

11.
The smallest active protein-tyrosine phosphatase yet (only 16 kDa) is described here and given the name VHZ for VH1-like member Z because it belongs to the group of small Vaccinia virus VH1-related dual specific phosphatases exemplified by VHR, VHX, and VHY. Human VHZ is remarkably well conserved through evolution as it has species orthologs in frogs, fish, fly, and Archaea. The gene for VHZ, which we designate as DUSP25, is located on human chromosome 1q23.1 and consists of only two coding exons. VHZ is broadly expressed in tissues and cells, including resting blood lymphocytes, Jurkat T cells, HL-60, and RAMOS. In transfected cells, VHZ was located in the cytosol and in other cells also in the nucleoli. Endogenous VHZ showed a similar but more granular distribution. We show that VHZ is an active phosphatase and analyze its structure by computer modeling, which shows that in comparison with the 185-amino acid residue VHR, the 150-residue VHZ is a shortened version of VHR and contains the minimal set of secondary structure elements conserved in all known phosphatases from this class. The surface charge distribution of VHZ differs from that of VHR and is therefore unlikely to dephosphorylate mitogen-activated protein kinases. The remarkably high degree of conservation of VHZ through evolution may indicate a role in some ancient and fundamental physiological process.  相似文献   

12.
Glutamate receptor (GluR) delta2 is selectively expressed in cerebellar Purkinje cells and plays a crucial role in cerebellum-dependent motor learning. Although GluRdelta2 belongs to an ionotropic GluR family, little is known about its pharmacological features and downstream signaling cascade. To study molecular mechanisms underlying GluRdelta2-dependent motor learning, we employed yeast two-hybrid screening to isolate GluRdelta2-interacting molecules and identified protein-tyrosine phosphatase PTPMEG. PTPMEG is a family member of band 4.1 domain-containing protein-tyrosine phosphatases and is expressed prominently in brain. Here, we showed by in situ hybridization analysis that the PTPMEG mRNA was enriched in mouse thalamus and Purkinje cells. We also showed that PTPMEG interacted with GluRdelta2 as well as with N-methyl-d-aspartate receptor GluRepsilon1 in cultured cells and in brain. PTPMEG bound to the putative C-terminal PDZ target sequence of GluRdelta2 and GluRepsilon1 via its PDZ domain. Examination of the effect of PTPMEG on tyrosine phosphorylation of GluRepsilon1 unexpectedly revealed that PTPMEG enhanced Fyn-mediated tyrosine phosphorylation of GluRepsilon1 in its PTPase activity-dependent manner. Thus, we conclude that PTPMEG associates directly with GluRdelta2 and GluRepsilon1. Moreover, our data suggest that PTPMEG plays a role in signaling downstream of the GluRs and/or in regulation of their activities through tyrosine dephosphorylation.  相似文献   

13.
The SARS-CoV accessory protein 7a is a type I membrane protein with an extracellular domain of 81 amino acid residues. It is described to be expressed during infection and to be a component of the virus particle surface. In this study, we demonstrate that protein 7a binds directly and specifically to human lymphocyte function-associated antigen 1 (LFA-1) on the cell surface of Jurkat cells. The binding is increased upon artificial cell activation with phorbol ester. These observations are confirmed by direct in vitro binding of recombinant protein 7a to the wild type and mutant K287C/K294C I domain showing that the I domain is the 7a binding site in the alpha(L) chain of LFA-1. Consequences of the LFA-1 interaction with 7a are discussed. In particular, our data suggest LFA-1 to be an attachment factor or the receptor for SARS-CoV on human leukocytes.  相似文献   

14.
MAGOH interacts with a novel RNA-binding protein   总被引:6,自引:0,他引:6  
Zhao XF  Nowak NJ  Shows TB  Aplan PD 《Genomics》2000,63(1):145-148
MAGOH is the human homologue of Drosophila mago nashi, a protein that is required for normal germ plasm development in the Drosophila embryo. Using human MAGOH as a bait protein in a yeast two-hybrid screen, we recovered four independent cDNA clones that encode different lengths of a novel protein containing a conserved RNA-binding region. This gene, designated RBM8, encodes a 173-aa protein that was shown to have an apparent molecular mass of 26 kDa, as demonstrated by in vitro translation assay. The interaction between MAGOH and RBM8 was demonstrated by both yeast two-hybrid and GST fusion protein pull-down assays. Like MAGOH, RBM8 gene is expressed ubiquitously in human tissues; three species of RBM8 mRNA were detected. Also similar to MAGOH, RBM8 expression is serum inducible in quiescent NIH3T3 fibroblast cells.  相似文献   

15.
Using a yeast two-hybrid system, we isolated eight cDNA clones which interacted with BH-protocadherin-c (BH-Pcdh-c) from the human brain cDNA library. One clone encoded protein phosphatase type I isoform alpha (PP1alpha) and another two PP1alpha2. PP1alpha was co-immunoprecipitated from the extract of a gastric adenocarcinoma cell line MKN-28 with anti-BH-Pcdh-c antibody. PP1alpha activity towards glycogen phosphorylase was inhibited by the intracellular domain of BH-Pcdh-c. Inhibition of the phosphatase required more than the minimal domain of BH-Pcdh-c which could associate with PP1alpha. In situ hybridization revealed that BH-Pcdh-c mRNA was predominantly expressed in cerebral cortex neurons in the adult mouse brain.  相似文献   

16.
Brome mosaic virus (BMV) requires the coat protein (CP) not only for encapsidation but also for viral cell-to-cell and long-distance movement in barley plants. This suggests that BMV infection is controlled by interactions of CP with putative host factors as well as with viral components. To identify the host factors that interact with BMV CP, we screened a barley cDNA library containing 2.4 x 10(6) independent clones, using a yeast two-hybrid system. Using full-length and truncated BMV CPs as baits, four candidate cDNA clones were isolated. One of the candidate cDNAs encodes a unique oxidoreductase enzyme, designated HCP1. HCP1 was found predominantly in the soluble fractions after differential centrifugation of BMV-infected and mock-inoculated barley tissues. A two-hybrid binding assay using a series of truncated BMV CPs demonstrated that a C-terminal portion of CP is essential for its interaction with HCP1. Interestingly, experiments with CP mutants bearing single amino acid substitutions at the C-terminus revealed that the capacity for mutant CP-HCP1 binding correlates well with the infectivity of the corresponding mutant viruses in barley. These results indicate that CP-HCP1 binding controls BMV infection of barley, interacting directly with CP, probably in the cell cytoplasm.  相似文献   

17.
18.
PRL-3 is a newly identified protein tyrosine phosphatase associated with tumor metastasis. It is over-expressed in various cancers, such as colorectal cancer, gastric cancer, and ovarian cancer, and is correlated with the progression and survival of cancers. Although PRL-3 plays a causative role in promoting cancer cell invasion and metastasis, the molecular mechanism is unknown. To investigate PRL-3's roles in tumorigenesis and signal transduction pathway, we screened the human placenta brain cDNA library with the bait of PRL-3 in yeast two-hybrid system. Then we identified integrin alpha1 as a PRL-3-interacting protein for the first time, and verified this physical association with pull-down and co-immunoprecipitation assays. Furthermore, we found that PRL-3 could down-regulate the tyrosine-phosphorylation level of integrin beta1 and increased the phosphorylation level of Erk1/2. Our present discovery will provide new clues for elucidating the molecular mechanism of PRL-3 in promoting cancer invasion and metastasis.  相似文献   

19.
20.
A novel protein phosphatase in Arabidopsis thaliana was identified by database searching. This protein, designated AtPTPKIS1, contains a protein tyrosine phosphatase (PTP) catalytic domain and a kinase interaction sequence (KIS) domain. It is predicted to interact with plant SNF1-related kinases (SnRKs), representing central regulators of metabolic and stress responses. AtPTPKIS1 has close homologues in other plant species, both dicots and monocots, but is not found in other kingdoms. The tomato homologue of AtPTPKIS1 was expressed as a recombinant protein and shown to hydrolyse a generic phosphatase substrate, and phosphotyrosine residues in synthetic peptides. The KIS domain of AtPTPKIS1 was shown to interact with the plant SnRK AKIN11 both in vivo in the yeast two-hybrid system, and in vitro in a GST-fusion 'pull down' assay. The genomes of Arabidopsis and other plants contain further predicted proteins related to AtPTPKIS1, which could also interact with SnRKs and act in novel regulatory and signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号