首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we examined the germination ecology with special reference to the temperature requirements for embryo development and germination of Corydalis cava subsp. cava, under both outdoor and laboratory conditions. Corydalis cava is a spring flowering woodland tuberous geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, was investigated in a population growing in northern Italy. Immediately after harvest, seeds of C. cava were sown both in the laboratory under simulated seasonal temperatures and naturally. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions, culminating in radicle emergence in winter, when temperatures fell to ca 5°C. Cotyledon emergence also occurred at ca 5°C, but first emergence was delayed until late winter and early spring. Laboratory experiments showed that high (summer) followed by medium (autumn) and low temperatures (winter) are needed for physiological dormancy loss, embryo development and germination respectively. Unlike seeds of C. cava that germinated in winter, in other Corydalis species radicle emergence occurred in autumn (C. flavula) or did not depend on a period of high summer temperature to break dormancy (C. solida). Our results suggest that subtle differences in dormancy and germination behavior between Corydalis species could be related to differences in their geographical distribution.  相似文献   

2.
We examined the germination ecology and the temperature requirements for germination of Erythronium dens-canis, under both outdoor and laboratory conditions. E. dens-canis is a spring flowering woodland geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, were investigated in a natural population growing in Northern Italy. Immediately after harvest, seeds of E. dens-canis were either sown on agar in the laboratory under simulated seasonal temperatures or placed in nylon mesh sachets and buried in the wild. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions in the laboratory and in the wild, culminating in radicle emergence in winter when temperatures fell to ≈ 5 °C. Emergence of cotyledons did not occur immediately after radicle emergence, but was delayed until the end of winter. Laboratory experiments showed that temperature is the main factor controlling dormancy and germination, with seeds becoming non-dormant only when given warmth, followed by cold stratification. Unlike seeds of E. dens-canis that germinate in winter, in other Erythronium species radicle emergence occurs in autumn, while in some it is delayed until seeds are transferred from winter to spring conditions. Our results suggest that there is genetic and environmental control of the expression of seed dormancy amongst Erythronium species, which is related to local climate.  相似文献   

3.
The survival of seedlings in temperate climate habitats depends on both temporal and spatial factors. The interaction between an internal seed dormancy mechanism and the ruling environmental conditions allows accurate cueing of germination. We analysed how environmental signals interact in seeds of temperate forest pioneer species, increasing the seed's chances of germinating in the right place at the right time. Digitalis purpurea and Scrophularia nodosa are two small-seeded herbaceous species that typically grow in vegetation gaps in European temperate forests. Seeds of both species are partially dormant at the time of dispersal in summer. This primary dormancy is released in autumn and early winter, resulting in a minimal level of physiological dormancy by late winter and early spring. We observed that physiological dormancy was induced again in seeds exhumed in late spring and in summer. Experiments in laboratory conditions revealed that primary dormancy in seeds of S nodosa was broken by cold stratification, whereas primary dormancy in D. purpurea seeds was broken by both a cold and a warm stratification. The two species differed in their response to the tested gap-detection signals, as light was the most important factor stimulating germination of D. purpurea, and seeds of S. nodosa germinated best when subjected to daily fluctuating temperatures. This study clearly indicates that the ability to germinate in response to gap-detection signals changes seasonally in temperate forest pioneers. Additionally, seeds of both species responded differently to these environmental signals, probably reflecting differences in the regeneration niche.  相似文献   

4.
Aims There are a number of mechanisms that regulate germination; among these, seed dormancy, one of the most important, is an adaptative mechanism in plants to promote survival by dispersing germination in space and time until environmental conditions are favourable for germination. The main goals of this study were to determine the temperature requirements for seed dormancy release and germination of Gentiana lutea subsp. lutea, to identify the class and level of seed dormancy and to suggest an optimal germination protocol.Methods Seeds belonging to two different localities were subjected to various pre-treatments, including cold stratification (0 and 5°C), warm stratification (25/10°C) and different combinations of these, and then incubated at a range of constant temperatures (5–25°C) and 25/10°C. Embryo growth during pre-treatments and incubation conditions were assessed at different times by measuring the embryo to seed length ratio (E:S ratio). The final germination percentage (FGP) and the germination rate (t 50) were calculated.Important findings Fleshy mature seeds of G. lutea subsp. lutea have linear underdeveloped embryos. Cold stratification at 0°C was effective in overcoming the physiological dormancy (PD) and promoted embryo growth and subsequent germination. After cold stratification at 0°C, both the root and the shoot emerged readily under a wide range of temperatures. G. lutea subsp. lutea seeds showed an intermediate complex morphophysiological dormancy (MPD). As regards the optimal germination protocol for this taxon, we suggest a period of cold stratification at ca. 0°C followed by seed incubation at 10–20°C. The optimal germination temperatures found for seeds of this taxon, as well as its pre-chilling requirement at 0°C, suggest that it is well adapted to a temperate climate; this behavior highlights an increasing threat from global warming for G. lutea, which could reduce the level of natural emergence in the field, prejudicing also the long-term persistence of the natural populations in Sardinia.  相似文献   

5.
6.
The biophysical mechanism underlying photoinhibition of radish (Raphanus sativus L.) seed germination was investigated using three cultivars differing in sensitivity to continuous irradiation with far-red light (high-irradiance reaction of phytochrome). Sensitivity of germination to the inhibitory action of light was assessed by probing germination under osmotic stress (incubation in media of low water potentials adjusted with polyethylene glycol 6000) and expressed in terms of ‘germination potential’ (positive value of the water potential at which germination is inhibited by 50%). Far-red light decreases the germination potential to various degrees in the different cultivars, reflecting the light-sensitivity of germination in water. Removal of the seed coat increases the germination potential by a constant amount in darkness and light. It is concluded that germination depends on the expansive force of the embryo which can be drastically diminished by far-red light. Seed-coat constraint and expansive force of the embryo interact additively on the level of the germination potential. Photoinhibition of germination was accompanied by an inhibition of water uptake into the seed. Analysis of seed water relations showed that osmotic pressure and turgor assumed higher levels in photoinhibited seeds, compared to seeds germinating in darkness, while the water potential was close to zero under both conditions. Far-red light produced a shift (to less negative values) in the curve relating water-uptake rate to external water potential, i.e. a reduction in the driving force for water uptake. It is concluded that photoinhibition of germination results from the maintenance of a high threshold of cell-wall extensibility in the embryo.  相似文献   

7.
  • The dormancy of seeds of upland cotton can be broken during dry after‐ripening, but the mechanism of its dormancy release remains unclear.
  • Freshly harvested cotton seeds were subjected to after‐ripening for 180 days. Cotton seeds from different days of after‐ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2O2 and phytohormones and activities of antioxidant enzymes and glucose‐6‐phosphate dehydrogenase were measured during after‐ripening and germination.
  • Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2O2 increased during after‐ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2O2 and changed peroxidase content during germination.
  • For cotton seed, the alleviation of coat‐imposed dormancy required 30 days of after‐ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
  相似文献   

8.
  • Threshold‐based thermal time models provide insight into the physiological switch from the dormant to the non‐dormant germinating seed.
  • This approach was used to quantify the different growth responses of the embryo of seeds purported to have morphophysiological dormancy (MPD) through the complex phases of dormancy release and germination. Aquilegia barbaricina seeds were incubated at constant temperatures (10–25 °C) and 25/10 °C, without pre‐treatment, after warm+cold stratification (W+C) and GA3 treatment. Embryo growth was assessed and the time of testa and endosperm rupture scored. Base temperatures (Tb) and thermal times for 50% (θ50) of embryo growth and seed germination were calculated.
  • W+C enabled slow embryo growth. W+C and GA3 promoted rapid embryo growth and subsequent radicle emergence. The embryo internal growth base temperature (Tbe) was ca. 5 °C for W+C and GA3‐treated seeds. GA3 treatment also resulted in similar Tb estimates for radicle emergence. The thermal times for embryo growth (θe50) and germination (θg50) were four‐ to six‐fold longer in the presence of GA3 compared to W+C.
  • A. barbaricina is characterised by a multi‐step seed germination. The slow embryo growth during W+C reflects continuation of the maternal programme of development, whilst the thermal kinetics of both embryo and radicle growth after the removal of physiological dormancy are distinctly different. The effects of W+C on the multiphasic germination response in MPD seeds are only partially mimicked by 250 mg·l?1 GA3. The thermal time approach could be a valid tool to model thermal kinetics of embryo growth and radicle protrusion.
  相似文献   

9.
  • Seed germination responsiveness to environmental cues is crucial for plant species living in changeable habitats and can vary among populations within the same species as a result of adaptation or modulation to local climates. Here, we investigate the germination response to environmental cues of Sisymbrella dentata (L.) O.E. Schulz, an annual endemic to Sicily living in Mediterranean Temporary Ponds (MTP), a vulnerable ecosystem.
  • Germination of the only two known populations, Gurrida and Pantano, was assessed over a broad range of conditions to understand the role of temperatures, nitrate, hormones (abscisic acid – ABA and gibberellins – GA) and after‐ripening in dormancy release in this species.
  • Seed germination responsiveness varied between the two populations, with seeds from Gurrida germinating under a narrower range of conditions. Overall, this process in S. dentata consisted of testa and endosperm rupture as two sequential events, influenced by ABA and GA biosynthesis. Nitrate addition caused an earlier testa rupture, after‐ripening broadened the thermal conditions that allow germination, and alternating temperatures significantly promoted germination of non‐after‐ripened seeds.
  • Primary dormancy in S. dentata seeds likely allows this plant to form a persistent seed bank that is responsive to specific environmental cues characteristic of MTP habitats.
  相似文献   

10.
The aim of this study was to determine the germinative ability of the seeds of four Narcissus taxa belonging to Section Pseudonarcissi after they had been conserved under the conditions of non-recalcitrant seed storage protocols. For each taxon (N. alcaracensis, N. longispathus, N. radinganorum and N. pseudonarcissus subsp. munozii-garmendiae), one seed lot was desiccated to 4% moisture content (MC) and stored under laboratory conditions (22°C, 40–50% relative humidity (RH), whereas another was dehydrated to 3% MC and stored at −10°C. The latter treatment simulated standard conservation conditions for non-recalcitrant seeds. After 26 months, embryo growth and germination were evaluated. Seed responses were correlated with their MC upon dispersal. Seeds of N. alcaracensis, N. longispathus and N. radinganorum left to dry on the mother plant during maturation had 8–10% MC when dispersed, tolerated non-recalcitrant seed conservation and germinated to >90% under the most favorable incubation conditions. Narcissus pseudonarcissus subsp. munozii-garmendiae seeds did not undergo maturation drying and had 46.7% MC upon dispersal. They reached 100% germination after being desiccated to 4% and stored at 22°C, were not recalcitrant, but failed to germinate when stored at −10°C under non-recalcitrant seed conservation conditions. Therefore, N. alcaracensis, N. longispathus and N. radinganorum seeds can be conserved under non-recalcitrant seed conditions in germplasm banks, whereas those of N. pseudonarcissus subsp. munozii-garmendiae are moderately recalcitrant. Seed storage behavior is influenced primarily by the extent of maturation drying of the seeds on the mother plant.  相似文献   

11.
Morphophysiological dormancy was investigated in seeds of Ribes multiflorum Kit ex Roem et Schult. ssp. sandalioticum Arrigoni, a rare mountain species endemic to Sardinia (Italy). There were no differences in imbibition rates between intact and scarified seeds, suggesting a lack of physical dormancy, while methylene blue solution (0.5%) highlighted a preferential pathway for solution entrance through the raphe. Embryos were small at seed dispersal, with an initial embryo:seed ratio (E:S) of ca. 0.2 (embryo length, ca. 0.5 mm), whereas the critical E:S ratio for germination was three times longer (ca. 0.6). Gibberellic acid (GA(3), 250 mg · l(-1)) and warm stratification (25 °C for 3 months) followed by low temperature (<15 °C) enhanced embryo growth rate (maximum of ca. 0.04 mm · day(-1) at 10 °C) and subsequent seed germination (radicle emergence; ca. 80% at 10 °C). Low germination occurred at warmer temperatures, and cold stratification (5 °C for 3 months) induced secondary dormancy. After radicle emergence, epicotyl emergence was delayed for ca. 2 months for seeds from three different populations. Mean time of epicotyl emergence was affected by GA(3) . Seeds of this species showed non-deep simple (root) - non-deep simple (epicotyl) morphophysiological dormancy, highlighting a high synchronisation with Mediterranean seasonality in all the investigated populations.  相似文献   

12.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

13.
海草种子休眠、萌发、幼苗生长及其影响因素的研究进展   总被引:1,自引:0,他引:1  
Zhang PD  Sun Y  Niu SN  Zhang XM 《应用生态学报》2011,22(11):3060-3066
海草床是沿岸海域重要的初级生产者,具有极其重要的生态价值和经济价值,是重要的浅海生态系统之一.本文综述了近年来国内外对海草种子休眠、萌发、幼苗生长及其影响因素的研究进展,总结了海草种子的休眠方式和休眠历期及其影响因素,探讨了盐度、温度、光、激素、溶解氧及种群等因素对海草种子萌发、幼苗存活和生长的影响,并对目前研究中存在的问题和今后的研究方向进行了展望.  相似文献   

14.
The effect of 24-epibrassinolide and 28-homobrassinolide on the inhibitionof germination and seedling growth of rice (Oryza sativa) induced bysalinity stress was studied. Brassinosteroids were found to reverse theinhibitory effect on germination and seedling growth. The activation ofseedling growth by brassinosteroids under salinity stress was associatedwith enhanced levels of nucleic acids and soluble proteins.  相似文献   

15.
脱落酸和赤霉素调控种子休眠与萌发研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
刘晏  李俊德  李家儒 《生物资源》2020,42(2):157-163
种子的休眠与萌发是高等植物生长发育进程中非常重要的环节,是维系物种繁衍的重要过程。而激素在这一过程中扮演着非常重要的角色。而在这个过程中脱落酸(abscisic acid,ABA)和赤霉素(gibberellin GA)发挥着尤其重要的作用。本文综述了当前对复杂分子网络的理解,这些分子网络涉及脱落酸和赤霉素在调节种子休眠和萌发中的关键作用,其中含AP2结构域的转录因子起着关键作用。  相似文献   

16.
环境因子对黄顶菊种子萌发的影响   总被引:16,自引:1,他引:16  
黄顶菊是一种入侵性极强的外来杂草,其种子对环境的适应是其成功入侵的前提.通过室内条件下黄顶菊种子的物理特性、环境因子对其种子萌发及幼苗生长影响等方面的研究,可为探讨黄顶菊快速蔓延的原因与揭示黄顶菊成功入侵机制提供理论依据.结果表明,黄顶菊种子极多而轻与黄顶菊大面积扩散密切相关,温度、光照和种子埋藏深度是决定黄顶菊种子萌发的关键因素.黄顶菊种子萌发的温度范围为5~40℃,25℃最适于种子的萌发,25~35℃条件下有利于幼苗的生长;黄顶菊种子是光敏感型种子,在土壤表面的萌发率最高(74.44%),大于3cm的深层土壤中则不能萌发;pH 对黄顶菊种子的萌发影响不明显,但其幼苗在酸性条件下生长较好;黄顶菊种子的萌发能忍受一定的盐胁迫和干旱胁迫,但随着胁迫程度的加重,根长和苗长逐渐降低,50%的土壤含水量对黄顶菊种子萌发和幼苗生长比较适宜.  相似文献   

17.
Bubon macedonicum L. is a chasmophytic species of south-eastern Europe. In Italy, it has been detected only in Rocca Monforte (Campobasso, central Italy). This rare species is included in the IUCN Red Lists of Critically Endangered Italian Flora, and there are no studies relating to B. macedonicum biology. The seed germination dynamics of this species was studied with the aim of building up an appropriate germination protocol to be used in ex situ conservation. On the basis of an ISTA protocol, about 3,000 seeds were collected from Rocca Monforte in August 2013. Fifty seeds were measured. The considered parameters were seed length, width, thickness, seed surface, volume, density, surface/mass ratio and eccentricity index. The morphometric parameters examined showed morphological dormancy, where a short warm period is necessary for embryo growth and seed germination. The results showed high germination percentages under the different conditions of temperature, pH, GA3 and photoperiod. Only at 5 °C was there no germination. Finally, the seeds maintain high germination percentages from the seed storage process after 130 and 390 days. This factor can be considered of great importance for the conservation of B. macedonicum over the medium and long term.  相似文献   

18.
Abstract While density dependence is a central issue in much of plant ecology, it is often overlooked during the crucial seed germination period of the plant life-cycle. Here, patterns of germination in relation to initial seed density for 12 phylogenetically-diverse perennial plant species are described from laboratory experiments. When each of the 12 species was analysed individually, seeds of Alysicarpus rugosus, Callistemon citrinus, Eragrostis curvula and Panicum miliaceum showed a significant decrease in the proportion of seeds germinating at high densities of conspecifics. A meta-analysis carried out by grouping 11 of the 12 species together revealed an overall significant effect for a decrease in the proportion of seeds germinating at high conspecific densities compared with low con-specific densities. Significant decreases in the proportion of seeds germinating are interpreted as risk reappraisal by seeds through dormancy in response to potentially hazardous conditions imposed by high density clusters of seeds all germinating at once. The four species that responded significantly to high densities individually were each treated at low densities with a leachate solution obtained from high density conspecifics. For Alysicarpus rugosus and Panicum miliaceum, this resulted in a significant decrease in the proportion of seeds germinating at simulated high densities implicating the leachate as a causative agent. Heterospecific effects were investigated similarly for A. rugosus and E. curvula by the addition of leachate from high density clusters of seeds of one species upon the other. Only A. rugosus decreased germination significantly through the addition of leachate. These results demonstrate the ability of seeds to predict environmental conditions of the habitat into which they will emerge in terms of potential competitive interactions from neighbouring seedlings.  相似文献   

19.
BACKGROUND AND AIMS: Many Orchidaceous species are threatened globally by development and over-collection from their natural habitats for horticultural purposes. Artificial propagation from seeds is difficult in most terrestrial orchids native to temperate regions. Seed production is another limiting factor in the artificial propagation for these species because of the lessened probability of pollination and the destruction of fruit by insect larvae. Members of the genus Cephalanthera are distributed across Europe, Asia and North America. C. falcata is a temperate species of East Asia and an endangered species in Japan. As successful propagation from seeds of this species has never been reported, a reproducible method is described here for seed production in situ and propagation using immature seeds in asymbiotic culture in vitro. METHODS: Effects of hand-pollination and bagging treatment of ovaries were examined. Young capsules were collected every 10 d from 50 d after pollination until 120 d after pollination. Immature seeds obtained from these capsules were cultured asymbiotically on modified Kano medium and ND medium. Seed viability was examined within TTC (2,3,5-triphenyl tetrazolium chloride) test solution and histological observations were made on viable seeds by paraffin embedding at each collection stage. KEY RESULTS AND CONCLUSIONS: Hand-pollination followed by bagging treatment of ovaries with aluminium foil was effective for insect control during fruit development, and successfully yielded capsules. Of the capsules, 74.5 % survived to full maturity. The highest frequency (39.8 %) of seed germination was obtained with seeds harvested 70 d after pollination. The frequency declined with progress of seed maturity on the mother plant. Minimal germination was observed with seeds harvested 100 d or later after pollination. Histological observation suggests that accumulation of such substances as lignin in the inner integument surrounding the embryo during seed maturation plays an important role in induction of dormancy.  相似文献   

20.
The main goal of the study was to assess germination requirements in a threatened daffodil to elaborate a detailed protocol for plant production from seeds, a key tool for conservation. Experiments were carried out both in the laboratory and outdoor conditions. In Pseudonarcissi section, endemic Iberian species of Narcissus studied heretofore have different levels of morphophysiological dormancy (MPD). Embryo length, radicle emergence, and shoot emergence were analyzed to determine the level of MPD. Both interpopulational variability and seed storage duration were also studied. Mean embryo length in fresh seeds was 1.32 mm and the embryo had to grow until it reached at least 2.00 mm to germinate. Embryo growth occurs during warm stratification, after which the radicle emerges when temperatures go down. Seed dormancy was broken in the laboratory at 28/14°C in darkness followed by 15/4°C, but the germination percentage varies depending on the population. In outdoor conditions, seed dispersal occurs in June, the embryo grows during the summer and then the radicle emerges in autumn. The radicle system continues to grow during the winter months, but the shoot does not emerge until the beginning of the spring because it is physiologically dormant and requires a cold period to break dormancy. Early cold temperatures interrupt embryo growth and induce dormancy in seeds with an advanced embryo development. Seeds of N. eugeniae have deep simple epicotyl MPD. In addition, we found that embryo growth and germination were improved by seed storage duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号