首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Photosystem II (PSII) contains two accessory chlorophylls (Chl(Z), ligated to D1-His118, and Chl(D), ligated to D2-His117), carotenoid (Car), and heme (cytochrome b(559)) cofactors that function as alternate electron donors under conditions in which the primary electron-donation pathway from the O(2)-evolving complex to P680(+) is inhibited. The photooxidation of the redox-active accessory chlorophylls and Car has been characterized by near-infrared (near-IR) absorbance, shifted-excitation Raman difference spectroscopy (SERDS), and electron paramagnetic resonance (EPR) spectroscopy over a range of cryogenic temperatures from 6 to 120 K in both Synechocystis PSII core complexes and spinach PSII membranes. The following key observations were made: (1) only one Chl(+) near-IR band is observed at 814 nm in Synechocystis PSII core complexes, which is assigned to Chl(Z)(+) based on previous spectroscopic studies of the D1-H118Q and D2-H117Q mutants [Stewart, D. H., Cua, A., Chisholm, D. A., Diner, B. A., Bocian, D. F., and Brudvig, G. W. (1998) Biochemistry 37, 10040-10046]; (2) two Chl(+) near-IR bands are observed at 817 and 850 nm in spinach PSII membranes which are formed with variable relative yields depending on the illumination temperature and are assigned to Chl(Z)(+), and Chl(D)(+), respectively; (3) the Chl and Car cation radicals have significantly different stabilities at reduced temperatures with Car(+) decaying much faster; (4) in Synechocystis PSII core complexes, Car(+) decays by recombination with Q(A)(-) and not by Chl(Z)/Chl(D) oxidation, with multiphasic kinetics that are attributed to an ensemble of protein conformers that are trapped as the protein is frozen; and (5) in spinach PSII membranes, Car(+) decays mainly by recombination with Q(A)(-), but also partly by formation of the 850 nm Chl cation radical. The greater stability of Chl(Z)(+) at low temperatures enabled us to confirm that resonance Raman bands previously assigned to Chl(Z)(+) are correctly assigned. In addition, the formation and decay of these cations provide insight into the alternate electron-donation pathways to P680(+).  相似文献   

2.
Water oxidation generating atmospheric oxygen occurs in photosystem II (PSII), a large protein-pigment complex located in the thylakoid membrane. The recent crystal structures at 3.2 and 3.5 A resolutions provide novel details on amino acid side chains, especially in the D1/D2 subunits. We calculated the redox potentials for one-electron oxidation of the chlorophyll a (Chla) molecules in PSII, considering the protein environment in atomic detail. The calculated redox potentials for the dimer Chla (P(D1/D2)) and accessory Chla (Chl(D1/D2)) were 1.11-1.30 V relative to the normal hydrogen electrode at pH 7, which is high enough for water oxidation. The D1/D2 proteins and their cofactors contribute approximately 390 mV to the enormous upshift of 470 mV compared to the redox potential of monomeric Chla in dimethylformamide. The other subunits are responsible for the remaining 80 mV. The high redox potentials of the two accessory Chla Chl(D1/D2) suggests that they also participate in the charge separation process.  相似文献   

3.
Stewart DH  Nixon PJ  Diner BA  Brudvig GW 《Biochemistry》2000,39(47):14583-14594
Photosystem II (PSII) contains a collection of pheophytins (Pheo) and chlorophylls (Chl) that have unique absorbance spectra depending on their electronic structure and the surrounding protein environment. Despite numerous efforts to identify the spectra of each cofactor, differing assignments of the chromophore absorbance bands and electrochromic effects have led to conflicting models of pigment organization and chromophore interactions in PSII. We have utilized low-temperature measurements on well-defined redox states, together with the use of site-directed mutants, to make spectral assignments of several reaction center (RC) chromophores. Cryogenic (77 K) optical spectroscopy has been used to trap the bound redox-active quinone, Q(A), in the reduced form and measure the effect of the redox state of Q(A) on PSII chromophores without interference from other redox-active cofactors. The Q(A)(-) minus Q(A) difference spectrum contains a number of features that represent the perturbation of Pheo and Chl absorbance bands upon Q(A) reduction. Using site-directed mutants in which the axial ligand of the D1-side monomeric core Chl, P(A), is changed (D1-H198Q) or the hydrogen-bonding environment of the D1-side Pheo is modified (D1-Q130E), we have assigned the Q(y)() absorbance bands of four chromophores shifted by Q(A) reduction including both RC Pheos, the D1-side monomeric accessory Chl (B(A)), and one other Chl in PSII. The absorbance maximum of B(A) was identified at 683.5 nm from least-squares fits of the D1-H198Q minus wild type (WT) Q(A)(-) minus Q(A) double-difference spectrum; this assignment provides new evidence of a secondary effect of site-directed mutation on a RC chromophore. The other chromophores were assigned from simultaneous fits of the WT and D1-Q130E spectra in which the parameters of only the D1-side Pheo were allowed to vary. The D1-side and D2-side Pheos were found to have lambda(max) values at 685.6 and 669.3 nm, respectively, and another Chl influenced by Q(A)(-) was identified at 678.8 nm. These assignments are in good agreement with previous spectral analyses of intact PSII preparations and reveal that the number of chromophores affected by Q(A) reduction has been underestimated previously. In addition, the assignments are generally consistent with chromophore positions that are similar in the PSII RC and the bacterial photosynthetic RC.  相似文献   

4.
Based on the current model of its structure and function, photosystem II (PSII) seems to have evolved from an ancestor that was homodimeric in terms of its protein core and contained a special pair of chlorophylls as the photo-oxidizable cofactor. It is proposed that the key event in the evolution of PSII was a mutation that resulted in the separation of the two pigments that made up the special chlorophyll pair, making them into two chlorophylls that were neither special nor paired. These ordinary chlorophylls, along with the two adjacent monomeric chlorophylls, were very oxidizing: a property proposed to be intrinsic to monomeric chlorophylls in the environment provided by reaction centre (RC) proteins. It seems likely that other (mainly electrostatic) changes in the environments of the pigments probably tuned their redox potentials further but these changes would have been minor compared with the redox jump imposed by splitting of the special pair. This sudden increase in redox potential allowed the development of oxygen evolution. The highly oxidizing homodimeric RC would probably have been not only inefficient in terms of photochemistry and charge storage but also wasteful in terms of protein or pigments undergoing damage due to the oxidative chemistry. These problems would have constituted selective pressures in favour of the lop-sided, heterodimeric system that exists as PSII today, in which the highly oxidized species are limited to only one side of the heterodimer: the sacrificial, rapidly turned-over D1 protein. It is also suggested that one reason for maintaining an oxidizable tyrosine, TyrD, on the D2 side of the RC, is that the proton associated with its tyrosyl radical, has an electrostatic role in confining P(+) to the expendable D1 side.  相似文献   

5.
Saito K  Shen JR  Ishida T  Ishikita H 《Biochemistry》2011,50(45):9836-9844
The crystal structure of photosystem II (PSII) analyzed at a resolution of 1.9 ? revealed a remarkably short H-bond between redox-active tyrosine Y(Z) and D1-His190 (2.46 ? donor-acceptor distance). Using large-scale quantum mechanical/molecular mechanical (QM/MM) calculations with the explicit PSII protein environment, we were able to reproduce this remarkably short H-bond in the original geometry of the crystal structure in the neutral [Y(Z)O···H···N(ε)-His-N(δ)H···O═Asn] state, but not in the oxidized states, indicating that the neutral state was the one observed in the crystal structure. In addition to the appropriate redox/protonation state of Y(Z) and D1-His190, we found that the presence of a cluster of water molecules played a key role in shortening the distance between Y(Z) and D1-His190. The orientations of the water molecules in the cluster were energetically stabilized by the highly polarized PSII protein environment, where the Ca ion of the oxygen-evolving complex (OEC) and the OEC ligand D1-Glu189 were also involved.  相似文献   

6.
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(?+)/P(D2)(?+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-? resolution, while considering all possibilities for the Chld-containing P(D1)/P(D2) pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large P(D1)(?+) population relative to P(D2)(?+), as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a P(D1)(?+)/P(D2)(?+) ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as P(D1)/P(D2) in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

7.
The influence of the histidine axial ligand to the PD1 chlorophyll of photosystem II on the redox potential and spectroscopic properties of the primary electron donor, P680, was investigated in mutant oxygen-evolving photosystem II (PSII) complexes purified from the thermophilic cyanobacterium Thermosynechococcus elongatus. To achieve this aim, a mutagenesis system was developed in which the psbA1 and psbA2 genes encoding D1 were deleted from a His-tagged CP43 strain (to generate strain WT*) and mutations D1-H198A and D1-H198Q were introduced into the remaining psbA3 gene. The O2-evolving activity of His-tagged PSII isolated from WT* was found to be significantly higher than that measured from His-tagged PSII isolated from WT in which psbA1 is expected to be the dominantly expressed form. PSII purified from both the D1-H198A and D1-H198Q mutants exhibited oxygen-evolving activity as high as that from WT*. Surprisingly, a variety of kinetic and spectroscopic measurements revealed that the D1-H198A and D1-H198Q mutations had little effect on the redox and spectroscopic properties of P680, in contrast to the earlier results from the analysis of the equivalent mutants constructed in Synechocystis sp. PCC 6803 [B.A. Diner, E. Schlodder, P.J. Nixon, W.J. Coleman, F. Rappaport, J. Lavergne, W.F. Vermaas, D.A. Chisholm, Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization, Biochemistry 40 (2001) 9265-9281]. We conclude that the nature of the axial ligand to PD1 is not an important determinant of the redox and spectroscopic properties of P680 in T. elongatus.  相似文献   

8.
Hasegawa K  Noguchi T 《Biochemistry》2005,44(24):8865-8872
The primary donor chlorophyll (Chl) of photosystem II (PSII), P680, has an extremely high oxidation redox potential (E(ox)) of approximately 1.2 V, which is essential for photosynthetic water oxidation. The mechanism for achieving a high potential such as that of P680 has been one of the central questions in photosynthesis research. Here, we have examined the dielectric constant (epsilon) dependence of the E(ox) of monomer Chl using density functional theory calculations with the polarizable continuum model. The calculated E(ox) of a model Chl compound exhibited a sharp increase with a decrease in epsilon in the relatively low epsilon region (epsilon < 5). In contrast, in the higher-epsilon region, E(ox) was rather insensitive to epsilon and converged to a constant value at very high epsilon values. This tendency in the high-epsilon region explains the experimental E(ox) values of isolated Chl a that have been observed in a relatively narrow range of 0.74-0.93 V. The E(ox) of Chl in an ideal hydrophobic protein was estimated to be approximately 1.4 V at an epsilon value of 2. This value indicates that Chl in a hydrophobic environment originally has a high E(ox) that is sufficient for oxidizing water (E(ox) = 0.88 V at pH 6). On the basis of the reported X-ray crystallographic structures, the protein environment of P680 in PSII was estimated to be more hydrophobic than that of the primary donors in bacterial reaction centers. It is therefore suggested that the low-dielectric environment around P680 is one of the major factors in its very high E(ox), and thus, introducing nonpolar amino acids into the binding pocket of P680 was an important process in the evolution of PSII.  相似文献   

9.
Ishikita H  Knapp EW 《Biochemistry》2005,44(45):14772-14783
In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration. We observed significant deprotonation at D1-Glu244 in the hydrophilic loop region upon Fe complex oxidation. The calculated pK(a) value for D1-Glu244 depends on the Fe complex redox state, yielding a pK(a) of 7.5 and 5.5 for Fe(2+) and Fe(3+), respectively. To account for the pH dependence of E(m)(Fe), a model involving not only D1-Glu244 but also the other titratable residues (five Glu in the D-de loops and six basic residues near the Fe complex) seems to be needed, implying the existence of a network of residues serving as an internal proton reservoir. Reduction of Q(A/B) yields +302 mV and +268 mV for E(m)(Fe) in the Q(A)(-)Q(B)(0) and Q(A)(0)Q(B)(-) states, respectively. Upon formation of the Q(A)(0)Q(B)(-) state, D1-His252 becomes protonated. Forming Fe(3+)Q(B)H(2) by a proton-coupled electron transfer process from the initial state Fe(2+)Q(B)(-) results in deprotonation of D1-His252. The two EPR signals observed at g = 1.82 and g = 1.9 in the Fe(2+)Q(A)(-) state of PSII may be attributed to D1-His252 with variable and fixed protonation, respectively.  相似文献   

10.
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 A resolution), in which 11 beta-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/Q(A) may imply a direct charge recombination of Car+Q(A)-. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.  相似文献   

11.
Photon absorption by one of the roughly 200 chlorophylls of the plant Photosystem II (PSII) results in formation of an equilibrated excited state (Chl200*) and is followed by chlorophyll oxidation (formation of P680+) coupled to reduction of a specific pheophytin (Phe), then electron transfer from Phe- to a firmly bound quinone (QA), and subsequently reduction of P680+ by a redox-active tyrosine residue denoted as Z. The involved free-energy differences (DeltaG) and redox potentials are of prime interest. Oxygen-evolving PSII membrane particles of spinach were studied at 5 degrees C. By analyzing the delayed and prompt Chl fluorescence, we determined the equilibrium constant and thus free-energy difference between Chl200* and the [Z+,QA-] radical pair to be -0.43+/-0.025 eV, at 10 mus after the photon absorption event for PSII in its S(3)-state. On basis of this value and previously published results, the free-energy difference between P680* and [P680+,QA-] is calculated to be -0.50+/-0.04 eV; the free-energy loss associated with electron transfer from Phe to QA is found to be 0.34+/-0.04 eV. The given uncertainty ranges do not represent a standard deviation or likely error, but an estimate of the maximal error. Assuming a QA-/QA redox potential of -0.08 V, the following redox-potential estimates are obtained: +1.25 V for P680/P680+; +1.21 V for Z/Z+ (at 10 mus); -0.42 V for Phe-/Phe; -0.58 V for P680*/P680+.  相似文献   

12.
D1-Thr179, which overlies the reaction center chlorophyll Chl D1 of Photosystem II was replaced with His and Glu through site-directed mutation in Synechocystis sp. PCC 6803. Spectroscopic characterization of the mutants indicates that, compared to wild type, the main bleaching in the triplet-minus-singlet absorbance difference spectrum and the electrochromic band shift in the (P680 (+)Q A (-)-P680Q A) absorbance difference spectrum are displaced to the red by approximately 2 nm in the D1-Thr179His mutant and to the blue by approximately 1 nm in the D1-Thr179Glu mutant. These difference spectra are compared with the absorbance difference spectra, measured on the same states in the D1-His198Gln mutant in which the axial ligand D1-His198 of the special pair chlorophyll, P D1, was replaced by glutamine. Together, these results give direct evidence that (a) the reaction center triplet state, produced upon charge recombination from (3)[P (+)Pheo (-)], is primarily localized on Chl D1; (b) the cation of the oxidized donor P (+) is predominantly localized on chlorophyll P D1 of the special pair; and (c) the Q Y band of the accessory chlorophyll Chl D1 is electrochromically shifted in response to charges on P (+) and Q A (-). Light-induced absorbance difference spectra (between 650 and 710 nm), associated with the oxidation of secondary donors and the reduction of Q A, exhibit a bleaching attributed to the oxidation of a Chl Z and strong electrochromic band shifts. On the basis of mutation-induced spectroscopic changes and of structure-based calculations, we conclude that the experimental spectra are best explained by a blue-shift of the Q Y band of the accessory chlorophyll Chl D1, arising from charges on Car D2 (+) and Chl ZD2 (+) and on reduced Q A.  相似文献   

13.
Site-directed mutations were introduced to replace D1-His198 and D2-His197 of the D1 and D2 polypeptides, respectively, of the photosystem II (PSII) reaction center of Synechocystis PCC 6803. These residues coordinate chlorophylls P(A) and P(B) which are homologous to the special pair Bchlorophylls of the bacterial reaction centers that are coordinated respectively by histidines L-173 and M-200 (202). P(A) and P(B) together serve as the primary electron donor, P, in purple bacterial reaction centers. In PS II, the site-directed mutations at D1 His198 affect the P(+)--P-absorbance difference spectrum. The bleaching maximum in the Soret region (in WT at 433 nm) is blue-shifted by as much as 3 nm. In the D1 His198Gln mutant, a similar displacement to the blue is observed for the bleaching maximum in the Q(y) region (672.5 nm in WT at 80 K), whereas features attributed to a band shift centered at 681 nm are not altered. In the Y(Z*)--Y(Z)-difference spectrum, the band shift of a reaction center chlorophyll centered in WT at 433--434 nm is shifted by 2--3 nm to the blue in the D1-His198Gln mutant. The D1-His198Gln mutation has little effect on the optical difference spectrum, (3)P--(1)P, of the reaction center triplet formed by P(+)Pheo(-) charge recombination (bleaching at 681--684 nm), measured at 5--80 K, but becomes visible as a pronounced shoulder at 669 nm at temperatures > or =150 K. Measurements of the kinetics of oxidized donor--Q(A)(-) charge recombination and of the reduction of P(+) by redox active tyrosine, Y(Z), indicate that the reduction potential of the redox couple P(+)/P can be appreciably modulated both positively and negatively by ligand replacement at D1-198 but somewhat less so at D2-197. On the basis of these observations and others in the literature, we propose that the monomeric accessory chlorophyll, B(A), is a long-wavelength trap located at 684 nm at 5 K. B(A)* initiates primary charge separation at low temperature, a function that is increasingly shared with P(A)* in an activated process as the temperature rises. Charge separation from B(A)* would be potentially very fast and form P(A)(+)B(A)(-) and/or B(A)(+)Pheo(-) as observed in bacterial reaction centers upon direct excitation of B(A) (van Brederode, M. E., et al. (1999) Proc. Natl. Acad Sci. 96, 2054--2059). The cation, generated upon primary charge separation in PSII, is stabilized at all temperatures primarily on P(A), the absorbance spectrum of which is displaced to the blue by the mutations. In WT, the cation is proposed to be shared to a minor extent (approximately 20%) with P(B), the contribution of which can be modulated up or down by mutation. The band shift at 681 nm, observed in the P(+)-P difference spectrum, is attributed to an electrochromic effect of P(A)(+) on neighboring B(A). Because of its low-energy singlet and therefore triplet state, the reaction center triplet state is stabilized on B(A) at < or =80 K but can be shared with P(A) at >80 K in a thermally activated process.  相似文献   

14.
The redox potential of Q(A) in photosystem II (PSII) is known to be lower by approximately 100 mV in the presence of phenolic herbicides compared with the presence of DCMU-type herbicides. In this study, the structural basis underlying the herbicide effects on the Q(A) redox potential was studied using Fourier transform infrared (FTIR) spectroscopy. Light-induced Q(A)(-)/Q(A) FTIR difference spectra of Mn-depleted PSII membranes in the presence of DCMU, atrazine, terbutryn, and bromacil showed a strong CO stretching peak of Q(A)(-) at 1,479 cm(-1), while binding of phenolic herbicides, bromoxynil and ioxynil, induced a small but clear downshift by approximately 1 cm(-1). The CO peak positions and the small frequency difference were reproduced in the S(2)Q(A)(-)/S(1)Q(A) spectra of oxygen-evolving PSII membranes with DCMU and bromoxynil. The relationship of the CO frequency with herbicide species correlated well with that of the peak temperatures of thermoluminescence due to S(2)Q(A)(-) recombination. Density functional theory calculations of model hydrogen-bonded complexes of plastoquinone radical anion showed that the small shift of the CO frequency is consistent with a change in the hydrogen-bond structure most likely as a change in its strength. The Q(A)(-)/Q(A) spectra in the presence of bromoxynil, and ioxynil, which bear a nitrile group in the phenolic ring, also showed CN stretching bands around 2,210 cm(-1). Comparison with the CN frequencies of bromoxynil in solutions suggested that the phenolic herbicides take a phenotate anion form in the Q(B) pocket. It was proposed that interaction of the phenolic C-O(-) with D1-His215 changes the strength of the hydrogen bond between the CO of Q(A) with D2-His214 via the iron-histidine bridge, causing the decrease in the Q(A) redox potential.  相似文献   

15.
As models for chlorophyll a (Chl a), methyl ester ClFe(III)pheophorbides (1, pheophorbide a; 2, mesopheophorbide a; and 3, mesopyropheophorbide a) were examined by Fourier transform infrared (FTIR) absorption and resonance Raman (RR) spectroscopy. The infrared (IR) chlorin band above 1600 cm-1, assigned as a Ca-Cm mode (Andersson et al. (1987) J. Am. Chem. Soc. 109, 2908-2916) is shown to be metal-sensitive and responsive to spin state and coordination number for dihydroporphyrins, as well as being diagnostic for the chlorin vs. porphyrin or bacteriochlorin macrocycle. Frequency variations for this metallochlorin IR band thus parallel those of the v10 RR mode of porphyrins in their predictive utility. Qy excitation SERRS spectra of Chl a were compared with Qy excitation RR spectra of 1 and methyl Ni(II)pyropheophorbide a. The data demonstrate that 5-coordinate ClFe(III)pheophorbides are better models for chlorophylls than are ruffled 4-coordinate Ni(II)pheophorbides. Major spectral differences between the three chlorophyll models are associated with the C-9 keto and/or C-10 carbomethoxy vibrational modes. The approx. 1700 cm-1 IR band was formerly assigned solely to v(C = O) of the C-9 keto group. However, this IR feature shifts down to approx. 1685 cm-1 and nearly doubles in intensity when the C-10 carbomethoxy is removed, as for 3. Similar frequency downshifts coupled with intensity increases in the IR are found in the literature on chlorophylls. RR spectra of pheophorbides having the C-10 carbomethoxy group (1 and 2) have bands at both approx. 1700 and approx. 1735 cm-1. However, the C-9 keto v(C = O) mode of pyrophorbins also downshifts to approx. 1685 cm-1, as in the IR spectra. The approx. 1735 cm-1 ester RR mode disappears in the case of pyrophorbins, and is never RR active for nonconjugated esters of porphyrins or chlorins. These data demonstrate an interaction between the C-10 and C-9 carbonyls of phorbins. They also indicate that phorbins tend toward conjugation of the C-10 ester. Biological examples of such conjugation effects have recently been reported, e.g., for the Chl a pi-cation radical (Heald et al. (1988) J. Phys. Chem. 92, 4820-4824). Because the phorbin E ring is the major structural feature distinguishing chlorophylls from non-photosynthetic systems, the participation of the C-10 ester in ring conjugation is suggestive of its biological importance.  相似文献   

16.
Infrared absorption and electron spin resonance studies have shown that the excited triplet state of chlorophyll formed by radical pair recombination in the PSII reaction center is mainly localized on the accessory chlorophyll, which is most probably located in the D1 protein (Chl(1)). This triplet localization plays two contrasting roles, depending on the redox state of Q(A), in the process of acceptor-side photoinhibition of PSII. In the early stage of photoinhibition, in which singly reduced Q(A) is reversibly stabilized, the triplet state of Chl(1) ((3)Chl(1)*) is rapidly quenched (t(1/2) = 2-20 micro s) by the interaction with Q(A)(-), preventing formation of harmful singlet oxygen. In the next inhibitory stage, in which Q(A) is doubly reduced and then irreversibly released from the Q(A) pocket, the lifetime of (3)Chl(1)* becomes longer by more than two orders of magnitude (t(1/2) = 1-3 ms). As a result, singlet oxygen is produced around Chl(1) in the D1 protein, causing damage preferably to the D1 protein, which induces subsequent proteolytic degradation. Thus, (3)Chl(1)* functions as a switch to change from the protective to the degradative phase of the PSII reaction center by sensing either reversible or irreversible inhibited state at the Q(A) site.  相似文献   

17.
Perrine Z  Sayre R 《Biochemistry》2011,50(9):1454-1464
One of the unique features of electron transfer processes in photosystem II (PSII) reaction centers (RC) is the exclusive transfer of electrons down only one of the two parallel cofactor branches. In contrast to the RC core polypeptides (psaA and psaB) of photosystem I (PSI), where electron transfer occurs down both parallel redox-active cofactor branches, there is greater protein-cofactor asymmetry between the PSII RC core polypeptides (D1 and D2). We have focused on the identification of protein-cofactor relationships that determine the branch along which primary charge separation occurs (P(680)(+)/pheophytin(-)(Pheo)). We have previously shown that mutagenesis of the strong hydrogen-bonding residue, D1-E130, to less polar residues (D1-E130Q,H,L) shifted the midpoint potential of the Pheo(D1)/Pheo(D1)(-) couple to more negative values, reducing the quantum yield of primary charge separation. We did not observe, however, electron transfer down the inactive branch in D1-E130 mutants. The protein residue corresponding to D1-E130 on the inactive branch is D2-Q129 which presumably has a reduced hydrogen-bonding interaction with Pheo(D2) relative to the D1-E130 residue with Pheo(D1). Analysis of the recent 2.9 ? cyanobacterial PSII crystal structure indicated, however, that the D2-Q129 residue was too distant from the Pheo(D2) headgroup to serve as a possible hydrogen bond donor and directly impact its midpoint potential as well as potentially determine the directionality of electron transfer. Our objective was to characterize the function of this highly conserved inactive branch residue by replacing it with a nonconservative leucine or a conservative histidine residue. Measurements of Chl fluorescence decay kinetics and thermoluminescence studies indicate that the mutagenesis of D2-Q129 decreases the redox gap between Q(A) and Q(B) due to a lowering of the redox potential of Q(B). The resulting increased yield of S(2)Q(B)(-) charge recombination in the D2-Q129 mutants leads to an increased susceptibility to photoinhibitory light presumably due to (3)P(680)-mediated oxidative damage. The results indicate that the D2-Q129 residue plays a critical role in stabilizing the charge-separated state in PSII and further documents the structural and functional asymmetry between the two cofactor branches in PSII.  相似文献   

18.
The interrelation between spectral and structural–functional properties of LhcIIb was studied. The dipole strength of the main Qy bands of chlorophylls (Chl a 30.8 D2; Chl b 18.5 D2) and chlorophyll a/b ratio (Chl a/Chl b = 7 : 6) were determined for LhcIIb. The Chl a/Chl b value shows that the subunit of this complex contains seven Chl a and six Chl b molecules. Individual bands of chlorophylls (bands in stokes and anti-Stokes parts at 77 K were Lorentzian and Gaussian, respectively) were resolved using synchronized deconvolution of absorption, CD, and LD bands of chlorophylls. Seven of these bands belonged to Chl a. Parameters of absorption bands of Chl a indicate that seven molecules represent a united cluster (heptamer) with exciton interactions, determining the spectrum of LhcIIb in the Chl a absorption region. Parameters of absorption bands of Chl b show the existence of three clusters: monomer (639.6 nm), dimer (645.2 and 647.4 nm), and trimer (649.8 and 654.1 nm). These clusters and their properties agree with the well-known structure of porphyrin groups of the LhcIIb subunit (Kuhlbrandt, 1994). A distorted ring of seven porphyrins in the stromal range of the subunit corresponds to Chl a heptamer; a separately located molecule near the N-terminal domain on the stromal side of the subunit corresponds to Chl b monomer; a dimer and a trimer of porphyrins in the lumenal range of the subunit correspond to the dimer and trimer of Chl b, respectively. The calculated lifetimes of the excitation energy (exciton) transfer in subunit and trimer of LhcIIb confirm this location of pigments. The geometry of the Chl a heptamer (mutual orientation of transition dipole moments) was determined by the steady-state Kasha–Tinoco approximation using parameters of individual bands of exciton splitting. The calculated parameters of mutual orientation of Chl a dipoles agree with the topography of the stromal porphyrins found by electron crystallography (Kuhlbrandt, 1994). A structural model of the granal multicentral macrocomplex of PSII (MPSII) is suggested. The lifetimes of the exciton migration between the main pigment–protein compartments of MPSII were calculated. The results of calculation are consistent with the structural model of the photosystem. The location of pigments provides for fast exciton hopping between Chl a clusters of neighboring proteins in the MPSII along the stromal surface within the membrane (5-25 psec) and between stacked membranes (40 psec) of chloroplast grana.  相似文献   

19.
The small hydrophobic polypeptide PsbT is associated with the photosystem II (PSII) reaction center (D1/D2 heterodimer). Here, we report the effect of the deletion of PsbT on the biogenesis of PSII complex during light-induced greening of y-1 mutants of the green alga Chlamydomonas reinhardtii. The y-1 is unable to synthesize chlorophylls in the dark but do so in the light. The dark-grown y-1 cells accumulated no major PSII proteins but a small amount of PsbT. Upon illumination, PsbT was immediately synthesized while chlorophylls, major PSII proteins, and O(2)-evolving activity increased after a 1-h lag. The y-1 cells without PsbT accumulated chlorophylls and PSI protein at a similar rate, whereas the accumulation of PSII complex was specifically retarded during greening. The absence of PsbT did not affect the synthesis of PSII proteins. These results indicate that PsbT is required for the efficient biogenesis of PSII complex.  相似文献   

20.
A role for redox-active tyrosines has been demonstrated in many important biological processes, including water oxidation carried out by photosystem II (PSII) of oxygenic photosynthesis. The rates of tyrosine oxidation and reduction and the Tyr/Tyr reduction potential are undoubtedly controlled by the immediate environment of the tyrosine, with the coupling of electron and proton transfer, a critical component of the kinetic and redox behavior. It has been demonstrated by Faller et al. that the rate of oxidation of tyrosine D (Tyr(D)) at room temperature and the extent of Tyr(D) oxidation at cryogenic temperatures, following flash excitation, dramatically increase as a function of pH with a pK(a) of approximately 7.6 [Faller et al. 2001 Proc. Natl. Acad. Sci. USA 98, 14368-14373; Faller et al. 2001 Biochemistry 41, 12914-12920]. In this work, we investigated, using FTIR difference spectroscopy, the mechanistic reasons behind this large pH dependence. These studies were carried out on Mn-depleted PSII core complexes isolated from Synechocystis sp. PCC 6803, WT unlabeled and labeled with (13)C(6)-, or (13)C(1)(4)-labeled tyrosine, as well as on the D2-Gln164Glu mutant. The main conclusions of this work are that the pH-induced changes involve the reduced Tyr(D) state and not the oxidized Tyr(D)() state and that Tyr(D) does not exist in the tyrosinate form between pH 6 and 10. We can also exclude a change in the protonation state of D2-His189 as being responsible for the large pH dependence of Tyr(D) oxidation. Indeed, our data are consistent with D2-His189 being neutral both in the Tyr(D) and Tyr(D)() states in the whole pH6-10 range. We show that the interactions between reduced Tyr(D) and D2-His189 are modulated by the pH. At pH greater than 7.5, the nu(CO) mode frequency of Tyr(D) indicates that Tyr(D) is involved in a strong hydrogen bond, as a hydrogen bond donor only, in a fraction of the PSII centers. At pH below 7.5, the hydrogen-bonding interaction formed by Tyr(D) is weaker and Tyr(D) could be also involved as a hydrogen bond acceptor, according to calculations performed by Takahashi and Noguchi [J. Phys. Chem. B 2007 111, 13833-13844]. The involvement of Tyr(D) in this strong hydrogen-bonding interaction correlates with the ability to oxidize Tyr(D) at cryogenic temperatures and rapidly at room temperature. A strong hydrogen-bonding interaction is also observed at pH 6 in the D2-Gln164Glu mutant, showing that the residue at position D2-164 regulates the properties of Tyr(D.) The IR data point to the role of a protonatable group(s) (with a pK(a) of approximately 7) other than D2-His189 and Tyr(D), in modifying the characteristics of the Tyr(D) hydrogen-bonding interactions, and hence its oxidation properties. It remains to be determined whether the strong hydrogen-bonding interaction involves D2-His189 and if Tyr(D) oxidation involves the same proton transfer route at low and at high pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号