首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Triggering signaling cascades by receptor tyrosine kinases.   总被引:30,自引:0,他引:30  
Growth factor receptors that are tyrosine kinases (RTKs) regulate growth and differentiation of cells in many organisms, including flies, worms, frogs, mice and humans. There has been recent progress in understanding the mechanism by which these receptors transduce signals. Worm and insect studies on RTKs have relied primarily on genetics, while the mammalian studies have employed a combination of molecular genetics and biochemistry. While many RTKs seem to have unique features, there are also many general signal transduction principles that emerge from these studies. In this review, we will focus on common signaling molecules, using RTKs from both vertebrates and invertebrates as examples.  相似文献   

2.
Knowledge on kinases and phosphatases acting on serine, threonine and tyrosine residues of vertebrate proteins is huge. These enzymes are still under intensive investigation at present. This is in sharp contrast to what is known about kinases and phosphatases acting on histidine, arginine, lysine and aspartate residues in vertebrate proteins. It also is in contrast to extensive studies of histidine/aspartate phosphorylation in prokaryotes. This minireview briefly summarizes what we have learned about the reversible phosphorylation of histidine residues in mammals. It is described how the field developed during 40 years of science. The article especially highlights the discovery of the first protein histidine phosphatase from vertebrates. Having identified and characterized a protein histidine phosphatase provides at least one desperately required tool to handle and study phosphorylation and dephosphorylation of histidine residues in vertebrates in more detail. Recent evidence even suggests an involvement of histidine phosphorylation in signal transduction.  相似文献   

3.
Receptor tyrosine kinases (RTKs) transmit intercellular signals that control many cellular events including proliferation, differentiation and cell survival. Ligand-bound RTKs regulate a complex network of intracellular signalling pathways. However, activation of just one of these pathways, which involves Ras and MAP kinase, is both necessary and sufficient to mediate the diverse developmental effects of several invertebrate RTKs. This article discusses these findings, which suggest that RTK-induced activation of MAP kinase in invertebrates acts as a simple developmental switch in multiple cell types, and considers the evidence that the Ras-MAP-kinase pathway also plays a similar role in vertebrates.  相似文献   

4.
Receptor tyrosine kinases (RTKs) and their ligands are important components of the signalling pathways by which cells interact. This review summarizes a growing body of genetic evidence showing that many developmentally important mutations in Drosophila and the mouse are in the genes that encode RTKs or their ligands, indicating that these molecules play central roles during both invertebrate and vertebrate development.  相似文献   

5.
Receptor tyrosine kinases (RTKs) are transactivated by the stimulation of G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P), a ligand of GPCR, is known as a tumor-promoting lipid, but its signaling pathways are not fully understood. We here demonstrated that S1P induces rapid and transient tyrosine phosphorylation of epidermal growth factor receptor (EGFR) and c-Met in gastric cancer cells, both of which have been proposed as prognostic markers of gastric cancers. The pathway of S1P-induced c-Met transactivation is Gi-independent and matrix metalloproteinase-independent, which differs from that of EGFR transactivation. Our results indicate that S1P acts upstream of various RTKs and thus may act as a potent stimulator of gastric cancer.  相似文献   

6.
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.  相似文献   

7.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

8.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

9.
Protein tyrosine kinases (PTKs) play a central role in the modulation of a wide variety of cellular events such as differentiation, proliferation and metabolism, and their unregulated activation can lead to various diseases including cancer and diabetes. PTKs represent a diverse family of proteins including both receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). Due to the diversity and important cellular roles of PTKs, accurate classification methods are required to better understand and differentiate different PTKs. In addition, PTKs have become important targets for drugs, providing a further need to develop novel methods to accurately classify this set of important biological molecules. Here, we introduce a novel statistical model for the classification of PTKs that is based on their structural features. The approach allows for both the recognition of PTKs and the classification of RTKs into their subfamilies. This novel approach had an overall accuracy of 98.5% for the identification of PTKs, and 99.3% for the classification of RTKs.  相似文献   

10.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

11.
Integrin signalling during tumour progression   总被引:18,自引:0,他引:18  
During progression from tumour growth to metastasis, specific integrin signals enable cancer cells to detach from neighbouring cells, re-orientate their polarity during migration, and survive and proliferate in foreign microenvironments. There is increasing evidence that certain integrins associate with receptor tyrosine kinases (RTKs) to activate signalling pathways that are necessary for tumour invasion and metastasis. The effect of these integrins might be especially important in cancer cells that have activating mutations, or amplifications, of the genes that encode these RTKs.  相似文献   

12.
Receptor tyrosine kinases (RTKs) are membrane receptors that play a vital role in various biological processes, in particular, cell survival, cell proliferation, and cell differentiation. These cellular processes are composed of multitiered signaling cascades of kinases starting from ligand binding to extracellular domains of RTKs that activate the entire pathways through tyrosine phosphorylation of the receptors and downstream effectors. A previous study reported that, based on proteomics data, RTKs were a major candidate target for osteosarcoma. In this study, activation profiles of six candidate RTKs, including c-Met, c-Kit, VEGFR2, HER2, FGFR1, and PDGFRα, were directly examined from chemonaive fresh frozen tissues of 32 osteosarcoma patients using a multiplex immunoassay. That examination revealed distinct patterns of tyrosine phosphorylation of RTKs in osteosarcoma cases. Unsupervised hierarchical clustering was calculated using Pearson uncentered correlation coefficient to classify RTKs into two groups—Group A (c-Met, c-Kit, VEGFR2, and HER2) and Group B (FGFR1 and PDGFRα)—based on tyrosine phosphorylation patterns. Nonactivation of all Group A RTKs was associated with shorter overall survival in stage IIB osteosarcoma patients. Percentages of tumor necrosis in patients with inactive Group A RTKs were significantly lower than those in patients with at least one active Group A RTK. Paired primary osteosarcoma cells with fresh osteosarcoma tissue were extracted and cultured for cytotoxicity testing. Primary cells with active Group A RTKs tended to be sensitive to doxorubicin and cisplatin. We also found that osteosarcoma cells with active Group A RTKs were more proliferative than cells with inactive Group A RTKs. These findings indicate that the activation pattern of Group A RTKs is a potential risk stratification and chemoresponse predictor and might be used to guide the optimum chemotherapy regimen for osteosarcoma patients.  相似文献   

13.
Receptor tyrosine kinases (RTKs) activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs), which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC) analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK.  相似文献   

14.
The insulin system including hormone insulin and signaling mechanisms realizing a wide spectrum of its regulatory effect is one of the major systems in the animals and human organism. At present the history of origin of this regulatory system in the course of evolution starts to be formed. There are grounds to believe that it appeared in unicellular eukaryotes, developed in multicellular ones, and achieved significant perfection in higher vertebrates. This paper analyzes the structural-functional organization of insulin-like peptides, their receptors, and the corresponding signaling mechanisms in four types of invertebrates (sponges, nematodes, molluscs, arthropods) in comparison with those in higher vertebrates. There is revealed evolutionary conservatism in the common structural-functional organization of insulin-like peptides of invertebrates and insulin of vertebrate animals; receptors of insulin-like peptides of invertebrates and receptors of insulin and insulin-like growth factor 1 of vertebrates that have tyrosine kinase activity; the insulin-like signaling systems including signaling blocks, similar by their primary structure in invertebrate and vertebrate animals (IRS-proteins, G-proteins, adenylyl cyclase, protein kinases A and C, etc.). The point of view is put forward that the conservatism of the functional blocks of the insulin system does not mean the absence of evolutionary changes of this system as a whole. Examples of such evolutionary changes leading to complication of the insulin system organization at supramolecular and cellular levels and to an increase of efficiency of its functioning are presented.  相似文献   

15.
A statistical analysis of occurrence of particular nucleotide runs (1 divided by 10 nucleotides long) in DNA sequences of different species has been carried out. There are considerable differences in run distributions in DNA sequences of prokaryotes, invertebrates and vertebrates. Distribution of various types of runs has been found to be different in coding and non-coding sequences. There is an abundance of short runs 1 divided by 2 nucleotides long in coding sequences, and there is a deficiency of such runs in the non-coding regions. However, some interesting exceptions from this rule exist: for run distribution of adenine in prokaryotes and for distribution of purine-pyrimidine runs in eukaryotes. This may be stipulated by the fact that the distribution of runs are predetermined by structural peculiarities of the entire DNA molecule. Runs of guanine or cytosine of three to six nucleotides long occur predominantly in the non-coding DNA regions in eukaryotes, especially in vertebrates.  相似文献   

16.
17.
Tight regulation of receptor tyrosine kinases (RTKs) is crucial for normal development and homeostasis. Dysregulation of RTKs signaling is associated with diverse pathological conditions including cancer. The Met RTK is the receptor for hepatocyte growth factor (HGF) and is dysregulated in numerous human tumors. Here we show that Abl family of non-receptor tyrosine kinases, comprised of Abl (ABL1) and Arg (ABL2), are activated downstream of the Met receptor, and that inhibition of Abl kinases dramatically suppresses HGF-induced cell scattering and tubulogenesis. We uncover a critical role for Abl kinases in the regulation of HGF/Met-dependent RhoA activation and RhoA-mediated actomyosin contractility and actin cytoskeleton remodeling in epithelial cells. Moreover, treatment of breast cancer cells with Abl inhibitors markedly decreases Met-driven cell migration and invasion. Notably, expression of a transforming mutant of the Met receptor in the mouse mammary epithelium results in hyper-activation of both Abl and Arg kinases. Together these data demonstrate that Abl kinases link Met activation to Rho signaling and Abl kinases are required for Met-dependent cell scattering, tubulogenesis, migration, and invasion. Thus, inhibition of Abl kinases might be exploited for the treatment of cancers driven by hyperactivation of HGF/Met signaling.  相似文献   

18.
Proteins of the Cbl family are adaptor molecules and ubiquitin ligases with major functions in the regulation, intracellular transport and degradation of receptor tyrosine kinases (RTKs). Due to this central role, mutations that cause malfunctions of Cbl or their associated proteins - termed the Cbl interactome - easily lead to the transformation of affected cells and eventually the development of cancer. This review intends to give an overview on the mechanisms of Cbl-mediated cell transformation in light of the dysregulated intracellular trafficking of RTKs.  相似文献   

19.
Early evolutionary origin of the neurotrophin receptor family.   总被引:5,自引:1,他引:4       下载免费PDF全文
Neurotrophins and their Trk receptors play a crucial role in the development and maintenance of the vertebrate nervous system, but to date no component of this signalling system has been found in invertebrates. We describe a molluscan Trk receptor, designated Ltrk, from the snail Lymnaea stagnalis. The full-length sequence of Ltrk reveals most of the characteristics typical of Trk receptors, including highly conserved transmembrane and intracellular tyrosine kinase domains, and a typical extracellular domain of leucine-rich motifs flanked by cysteine clusters. In addition, Ltrk has a unique N-terminal extension and lacks immunoglobulin-like domains. Ltrk is expressed during development in a stage-specific manner, and also in the adult, where its expression is confined to the central nervous system and its associated endocrine tissues. Ltrk has the highest sequence identity with the TrkC mammalian receptor and, when exogenously expressed in fibroblasts or COS cells, binds human NT-3, but not NGF or BDNF, with an affinity of 2.5 nM. These findings support an early evolutionary origin of the Trk family as neuronal receptor tyrosine kinases and suggest that Trk signalling mechanisms may be highly conserved between vertebrates and invertebrates.  相似文献   

20.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号